We need to control exponential behavior of loop-unswitch so we do not get
run-away compilation.
Suggested solution is to introduce a multiplier for an unswitch cost that
makes cost prohibitive as soon as there are too many candidates and too
many sibling loops (meaning we have already started duplicating loops
by unswitching).
It does solve the currently known problem with compile-time degradation
(PR 39544).
Tests are built on top of a recently implemented CHECK-COUNT-<num>
FileCheck directives.
Reviewed By: chandlerc, mkazantsev
Differential Revision: https://reviews.llvm.org/D54223
llvm-svn: 347097
An attempt to recommit r346584 after failure on OSX build bot.
Fixed cache key computation in ThinLTOCodeGenerator and added
test case
llvm-svn: 347033
Summary:
These asserts are based on the assumption that the order of true/false operands in a select and those in the compare would always be the same.
This fixes PR39595.
Reviewers: craig.topper, spatel, dmgreen
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54359
llvm-svn: 346874
This patch adds an initial implementation of the look-ahead SLP tree
construction described in 'Look-Ahead SLP: Auto-vectorization in the Presence
of Commutative Operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
Luís F. W. Góes'.
It returns an SLP tree represented as VPInstructions, with combined
instructions represented as a single, wider VPInstruction.
This initial version does not support instructions with multiple
different users (either inside or outside the SLP tree) or
non-instruction operands; it won't generate any shuffles or
insertelement instructions.
It also just adds the analysis that builds an SLP tree rooted in a set
of stores. It does not include any cost modeling or memory legality
checks. The plan is to integrate it with VPlan based cost modeling, once
available and to only apply it to operations that can be widened.
A follow-up patch will add a support for replacing instructions in a
VPlan with their SLP counter parts.
Reviewers: Ayal, mssimpso, rengolin, mkuper, hfinkel, hsaito, dcaballe, vporpo, RKSimon, ABataev
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D4949
llvm-svn: 346857
The shift amount of a funnel shift is modulo the scalar bitwidth:
http://llvm.org/docs/LangRef.html#llvm-fshl-intrinsic
...so we can use demanded bits analysis on that operand to simplify it
when we have a power-of-2 bitwidth.
This is another step towards canonicalizing {shift/shift/or} to the
intrinsics in IR.
Differential Revision: https://reviews.llvm.org/D54478
llvm-svn: 346814
LoopUtils.cpp contains a utility that splits an loop exit block, so that the new block contains only edges coming from the loop. In the case of nested loops, the exit path for the inner loop might also be the back-edge of the outer loop. The new block which is inserted on this path, is now a latch for the outer loop, and it needs to hold the loop metadata for the outer loop. (The test case gives a more concrete view of the situation.)
Patch by Chang Lin (clin1)
Differential Revision: https://reviews.llvm.org/D53876
llvm-svn: 346810
The cmp+branch variant of this pattern is shown in:
https://bugs.llvm.org/show_bug.cgi?id=34924
...and as discussed there, we probably can't transform
that without a rotate intrinsic. We do have that now
via funnel shift, but we're not quite ready to
canonicalize IR to that form yet. The case with 'select'
should already be transformed though, so that's this patch.
The sequence with negation followed by masking is what we
use in the backend and partly in clang (though that part
should be updated).
https://rise4fun.com/Alive/TplC
%cmp = icmp eq i32 %shamt, 0
%sub = sub i32 32, %shamt
%shr = lshr i32 %x, %shamt
%shl = shl i32 %x, %sub
%or = or i32 %shr, %shl
%r = select i1 %cmp, i32 %x, i32 %or
=>
%neg = sub i32 0, %shamt
%masked = and i32 %shamt, 31
%maskedneg = and i32 %neg, 31
%shl2 = lshr i32 %x, %masked
%shr2 = shl i32 %x, %maskedneg
%r = or i32 %shl2, %shr2
llvm-svn: 346807
This patch updates DuplicateInstructionsInSplitBetween to update a DTU
instead of applying updates to the DT directly.
Given that there only are 2 users, also updated them in this patch to
avoid churn.
I slightly moved the code in CallSiteSplitting around to reduce the
places where we have to pass in DTU. If necessary, I could split those
changes in a separate patch.
This fixes missing DT updates when dealing with musttail calls in
CallSiteSplitting, by using DTU->deleteBB.
Reviewers: junbuml, kuhar, NutshellySima, indutny, brzycki
Reviewed By: NutshellySima
llvm-svn: 346769
This patch turns InterleaveGroup into a template with the instruction type
being a template parameter. It also adds a VPInterleavedAccessInfo class, which
only contains a mapping from VPInstructions to their respective InterleaveGroup.
As we do not have access to scalar evolution in VPlan, we can re-use
convert InterleavedAccessInfo to VPInterleavedAccess info.
Reviewers: Ayal, mssimpso, hfinkel, dcaballe, rengolin, mkuper, hsaito
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D49489
llvm-svn: 346758
Summary:
This patch introduces DebugCounter into ConstProp pass at per-transformation level.
It will provide an option to skip first n or stop after n transformations for the whole ConstProp pass.
This will make debug easier for the pass, also providing chance to do transformation level bisecting.
Reviewers: davide, fhahn
Reviewed By: fhahn
Subscribers: llozano, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D50094
llvm-svn: 346720
This is a longer variant for the pattern handled in
rL346713
This one includes zexts.
Eventually, we should canonicalize all rotate patterns
to the funnel shift intrinsics, but we need a bit more
infrastructure to make sure the vectorizers handle those
intrinsics as well as the shift+logic ops.
https://rise4fun.com/Alive/FMn
Name: narrow rotateright
%neg = sub i8 0, %shamt
%rshamt = and i8 %shamt, 7
%rshamtconv = zext i8 %rshamt to i32
%lshamt = and i8 %neg, 7
%lshamtconv = zext i8 %lshamt to i32
%conv = zext i8 %x to i32
%shr = lshr i32 %conv, %rshamtconv
%shl = shl i32 %conv, %lshamtconv
%or = or i32 %shl, %shr
%r = trunc i32 %or to i8
=>
%maskedShAmt2 = and i8 %shamt, 7
%negShAmt2 = sub i8 0, %shamt
%maskedNegShAmt2 = and i8 %negShAmt2, 7
%shl2 = lshr i8 %x, %maskedShAmt2
%shr2 = shl i8 %x, %maskedNegShAmt2
%r = or i8 %shl2, %shr2
llvm-svn: 346716
The sub-pattern for the shift amount in a rotate can take on
several different forms, and there's apparently no way to
canonicalize those without seeing the entire rotate sequence.
This is the form noted in:
https://bugs.llvm.org/show_bug.cgi?id=39624https://rise4fun.com/Alive/qnT
%zx = zext i8 %x to i32
%maskedShAmt = and i32 %shAmt, 7
%shl = shl i32 %zx, %maskedShAmt
%negShAmt = sub i32 0, %shAmt
%maskedNegShAmt = and i32 %negShAmt, 7
%shr = lshr i32 %zx, %maskedNegShAmt
%rot = or i32 %shl, %shr
%r = trunc i32 %rot to i8
=>
%truncShAmt = trunc i32 %shAmt to i8
%maskedShAmt2 = and i8 %truncShAmt, 7
%shl2 = shl i8 %x, %maskedShAmt2
%negShAmt2 = sub i8 0, %truncShAmt
%maskedNegShAmt2 = and i8 %negShAmt2, 7
%shr2 = lshr i8 %x, %maskedNegShAmt2
%r = or i8 %shl2, %shr2
llvm-svn: 346713
Noticed via inspection. Appears to be largely innocious in practice, but slight code change could have resulted in either visit order dependent missed optimizations or infinite loops. May be a minor compile time problem today.
llvm-svn: 346698
Instead of defaulting to a cost = 1, expand to element extract/insert like we do for other shuffles.
This exposes an issue in LoopVectorize which could call SK_ExtractSubvector with a scalar subvector type.
llvm-svn: 346656
This patch relaxes overconservative checks on whether or not we could write
memory before we execute an instruction. This allows us to hoist guards out of
loops even if they are not in the header block.
Differential Revision: https://reviews.llvm.org/D50891
Reviewed By: fedor.sergeev
llvm-svn: 346643
Summary:
When making code coverage, a lot of files (like the ones coming from /usr/include) are removed when post-processing gcno/gcda so finally they doen't need to be instrumented nor to appear in gcno/gcda.
The goal of the patch is to be able to filter the files we want to instrument, there are several advantages to do that:
- improve speed (no overhead due to instrumentation on files we don't care)
- reduce gcno/gcda size
- it gives the possibility to easily instrument only few files (e.g. ones modified in a patch) without changing the build system
- need to accept this patch to be enabled in clang: https://reviews.llvm.org/D52034
Reviewers: marco-c, vsk
Reviewed By: marco-c
Subscribers: llvm-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D52033
llvm-svn: 346641
This patch allows internalising globals if all accesses to them
(from live functions) are from non-volatile load instructions
Differential revision: https://reviews.llvm.org/D49362
llvm-svn: 346584
ComputeValueKnownInPredecessors has a "visited" set to prevent infinite
loops, since a value can be visited more than once. However, the
implementation didn't prevent the algorithm from taking exponential
time. Instead of removing elements from the RecursionSet one at a time,
we should keep around the whole set until
ComputeValueKnownInPredecessors finishes, then discard it.
The testcase is synthetic because I was having trouble effectively
reducing the original. But it's basically the same idea.
Instead of failing, we could theoretically cache the result instead.
But I don't think it would help substantially in practice.
Differential Revision: https://reviews.llvm.org/D54239
llvm-svn: 346562
After D45330, Dominators are required for IPSCCP and can be preserved.
This patch preserves DominatorTreeAnalysis in the new pass manager. AFAIK the legacy pass manager cannot preserve function analysis required by a module analysis.
Reviewers: davide, dberlin, chandlerc, efriedma, kuhar, NutshellySima
Reviewed By: chandlerc, kuhar, NutshellySima
Differential Revision: https://reviews.llvm.org/D47259
llvm-svn: 346486
We can stop recording conditions once we reached the immediate dominator
for the block containing the call site. Conditions in predecessors of the
that node will be the same for all paths to the call site and splitting
is not beneficial.
This patch makes CallSiteSplitting dependent on the DT anlysis. because
the immediate dominators seem to be the easiest way of finding the node
to stop at.
I had to update some exiting tests, because they were checking for
conditions that were true/false on all paths to the call site. Those
should now be handled by instcombine/ipsccp.
Reviewers: davide, junbuml
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D44627
llvm-svn: 346483
In SimplifyCFG when given a conditional branch that goes to BB1 and BB2, the hoisted common terminator instruction in the two blocks, caused debug line records associated with subsequent select instructions to become ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53390
llvm-svn: 346481
This patch adds logic to detect reductions across the inner and outer
loop by following the incoming values of PHI nodes in the outer loop. If
the incoming values take part in a reduction in the inner loop or come
from outside the outer loop, we found a reduction spanning across inner
and outer loop.
With this change, ~10% more loops are interchanged in the LLVM
test-suite + SPEC2006.
Fixes https://bugs.llvm.org/show_bug.cgi?id=30472
Reviewers: mcrosier, efriedma, karthikthecool, davide, hfinkel, dmgreen
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D43245
llvm-svn: 346438
Summary:
This fixes PR 37422
In ELF, non-weak symbols can also be non-prevailing. In this particular
PR, the __llvm_profile_* symbols are non-prevailing but weren't getting
dropped - causing multiply-defined errors with lld.
Also add a test, strong_non_prevailing.ll, to ensure that multiple
copies of a strong symbol are dropped.
To fix the test regressions exposed by this fix,
- do not mark prevailing copies for symbols with 'appending' linkage.
There's no one prevailing copy for such symbols.
- fix the prevailing version in dead-strip-fulllto.ll
- explicitly pass exported symbols to llvm-lto in fumcimport.ll and
funcimport_var.ll
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith,
dang, srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D54125
llvm-svn: 346436
Summary:
When the 3rd argument to these intrinsics is zero, lowering them
to shift instructions produces poison values, since we end up with
shift amounts equal to the number of bits in the shifted value. This
means we can only lower these intrinsics if we can prove that the
3rd argument is not zero.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: bnieuwenhuizen, jvesely, wdng, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D53739
llvm-svn: 346422
This eliminates the outlining penalty for llvm.trap/unreachable, because
callers no longer have to emit cleanup/ret instructions after calling an
outlined `noreturn` function.
rdar://45523626
llvm-svn: 346421
The patch has been reverted because it ended up prohibiting propagation
of a constant to exit value. For such values, we should skip all checks
related to hard uses because propagating a constant is always profitable.
Differential Revision: https://reviews.llvm.org/D53691
llvm-svn: 346397
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
This commit fixes a bug in the original patch (committed at r345114, reverted
at r345123).
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 346390
Summary:
MergeFunctions currently tries to process strong functions before
weak functions, because weak functions can simply call strong
functions, while a strong/weak function cannot call a weak function
(a backing strong function is needed).
This patch additionally tries to process external functions before
local functions, because we definitely have to keep the external
function, but may be able to drop the local one (and definitely
can if it is also unnamed_addr).
Unfortunately, this exposes an existing bug in the implementation:
The FnTree and FNodesInTree structures can currently go out of
sync in the case where two weak functions are merged, because the
function in FnTree/FNodesInTree is RAUWed. This leaves it behind in
FnTree (this is intended, as it is the strong backing function which
should be used for further merges), while it is replaced in
FNodesInTree (this is not intended).
This is fixed by switching FNodesInTree from using a ValueMap to
using a DenseMap of AssertingVH.
This exposes another minor issue: Currently FNodesInTree is not
cleared after MergeFunctions finishes running. Currently, this is
potentially dangerous (e.g. if something else wants to RAUW a function
with a non-function), but at the very least it is unnecessary/inefficient.
After the change to use AssertingVH it becomes more problematic,
because there are certainly passes that remove functions.
This issue is fixed by clearing FNodesInTree at the end of the pass.
Reviewers: jfb, whitequark
Reviewed By: whitequark
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D53271
llvm-svn: 346386
Summary:
For unnamed_addr functions we RAUW instead of only replacing direct callers. However, functions in which replacements were performed currently are not added back to the worklist, resulting in missed merging opportunities.
Fix this by calling removeUsers() prior to RAUW.
Reviewers: jfb, whitequark
Reviewed By: whitequark
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D53262
llvm-svn: 346385
If all the edge counts for a function are zero, skip count population and
annotation, as nothing will happen. This can save some compile time.
Differential Revision: https://reviews.llvm.org/D54212
llvm-svn: 346370
When partial unswitch operates on multiple conditions at once, .e.g:
if (Cond1 || Cond2 || NonInv) ...
it should infer (and replace) values for individual conditions only on one
side of unswitch and not another.
More precisely only these derivations hold true:
(Cond1 || Cond2) == false => Cond1 == Cond2 == false
(Cond1 && Cond2) == true => Cond1 == Cond2 == true
By the way we organize unswitching it means only replacing on "continue" blocks
and never on "unswitched" ones. Since trivial unswitch does not have "unswitched"
blocks it does not have this problem.
Fixes PR 39568.
Reviewers: chandlerc, asbirlea
Differential Revision: https://reviews.llvm.org/D54211
llvm-svn: 346350
If we simplify an instruction to itself, we do not need to add a user to
itself. For congruence classes with a defining expression, we already
use a similar logic.
Fixes PR38259.
Reviewers: davide, efriedma, mcrosier
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D51168
llvm-svn: 346335
By morphing the instruction rather than deleting and creating a new one,
we retain fast-math-flags and potentially other metadata (profile info?).
llvm-svn: 346331
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
llvm-svn: 346322
The sibling fold for 'oge' --> 'ord' was already here,
but this half was missing.
The result of fabs() must be positive or nan, so asking
if the result is negative or nan is the same as asking
if the result is nan.
This is another step towards fixing:
https://bugs.llvm.org/show_bug.cgi?id=39475
llvm-svn: 346321
Summary:
This is replacement for patch in https://reviews.llvm.org/D49460.
When we fork, the counters are duplicate as they're and so the values are finally wrong when writing gcda for parent and child.
So just before to fork, we flush the counters and so the parent and the child have new counters set to zero.
For exec** functions, we need to flush before the call to have some data.
Reviewers: vsk, davidxl, marco-c
Reviewed By: marco-c
Subscribers: llvm-commits, sylvestre.ledru, marco-c
Differential Revision: https://reviews.llvm.org/D53593
llvm-svn: 346313
As shown, this is used to eliminate redundant code in InstCombine,
and there are more cases where we should be using this pattern, but
we're currently unintentionally dropping flags.
llvm-svn: 346282
Summary:
The NotEligibleToImport flag on the GlobalValueSummary was set if it
isn't legal to import (e.g. because it references unpromotable locals)
and when it can't be inlined (in which case importing is pointless).
I split out the inlinable piece into a separate flag on the
FunctionSummary (doesn't make sense for aliases or global variables),
because in the future we may want to import for reasons other than
inlining.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53345
llvm-svn: 346261
The lowering for a call to eh_typeid_for changes when it's moved from
one function to another.
There are several proposals for fixing this issue in llvm.org/PR39545.
Until some solution is in place, do not allow CodeExtractor to extract
calls to eh_typeid_for, as that results in serious miscompilations.
llvm-svn: 346256
When CodeExtractor moves instructions to a new function, debug
intrinsics referring to those instructions within the parent function
become invalid.
This results in the same verifier failure which motivated r344545, about
function-local metadata being used in the wrong function.
llvm-svn: 346255
This is another part of solving PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
This might be enough to fix that particular issue, but as noted
with the FIXME, we're still dropping FMF on other folds around here.
llvm-svn: 346234
LICM relies on variable `MustExecute` which is conservatively set to `false`
in all non-headers. It is used when we decide whether or not we want to hoist
an instruction or a guard.
For the guards, it might be too conservative to use this variable, we can
instead use a more precise logic from LoopSafetyInfo. Currently it is only NFC
because `IsMemoryNotModified` is also conservatively set to `false` for all
non-headers, and we cannot hoist guards from non-header blocks. However once we
give up using `IsMemoryNotModified` and use a smarter check instead, this will
allow us to hoist guards from all mustexecute non-header blocks.
Differential Revision: https://reviews.llvm.org/D50888
Reveiwed By: fedor.sergeev
llvm-svn: 346204
This patch makes LICM use `ICFLoopSafetyInfo` that is a smarter version
of LoopSafetyInfo that leverages power of Implicit Control Flow Tracking
to keep track of throwing instructions and give less pessimistic answers
to queries related to throws.
The ICFLoopSafetyInfo itself has been introduced in rL344601. This patch
enables it in LICM only.
Differential Revision: https://reviews.llvm.org/D50377
Reviewed By: apilipenko
llvm-svn: 346201
This reverts commit 2f425e9c7946b9d74e64ebbfa33c1caa36914402.
It seems that the check that we still should do the transform if we
know the result is constant is missing in this code. So the logic that
has been deleted by this change is still sometimes accidentally useful.
I revert the change to see what can be done about it. The motivating
case is the following:
@Y = global [400 x i16] zeroinitializer, align 1
define i16 @foo() {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i = phi i16 [ 0, %entry ], [ %inc, %for.body ]
%arrayidx = getelementptr inbounds [400 x i16], [400 x i16]* @Y, i16 0, i16 %i
store i16 0, i16* %arrayidx, align 1
%inc = add nuw nsw i16 %i, 1
%cmp = icmp ult i16 %inc, 400
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
%inc.lcssa = phi i16 [ %inc, %for.body ]
ret i16 %inc.lcssa
}
We should be able to figure out that the result is constant, but the patch
breaks it.
Differential Revision: https://reviews.llvm.org/D51584
llvm-svn: 346198
This is NFCI for InstCombine because it calls InstSimplify,
so I left the tests for this transform there. As noted in
the code comment, we can allow this fold more often by using
FMF and/or value tracking.
llvm-svn: 346169
Summary:
This patch prevents MergeICmps to performn the transformation if the address operand GEP of the load instruction has a use outside of the load's parent block. Without this patch, compiler crashes with the given test case because the use of `%first.i` is still around when the basic block is erased from https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/Scalar/MergeICmps.cpp#L620. I think checking `isUsedOutsideOfBlock` with `GEP` is the original intention of the code, as the checking for `LoadI` is already performed in the same function.
This patch is incomplete though, as this makes the pass overly conservative and fails the test `tuple-four-int8.ll`. I believe what needs to be done is checking if GEP has a use outside of block that is not the part of "Comparisons" chain. Submit the patch as of now to prevent compiler crash.
Reviewers: courbet, trentxintong
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54089
llvm-svn: 346151
As stated in IEEE-754 and discussed in:
https://bugs.llvm.org/show_bug.cgi?id=38086
...the sign of zero does not affect any FP compare predicate.
Known regressions were fixed with:
rL346097 (D54001)
rL346143
The transform will help reduce pattern-matching complexity to solve:
https://bugs.llvm.org/show_bug.cgi?id=39475
...as well as improve CSE and codegen (a zero constant is almost always
easier to produce than 0x80..00).
llvm-svn: 346147
It looks like we correctly removed edge cases with 0.0 from D50714,
but we were a bit conservative because getBinOpIdentity() doesn't
distinguish between +0.0 and -0.0 and 'nsz' is effectively always
true for fcmp (see discussion in:
https://bugs.llvm.org/show_bug.cgi?id=38086
Without this change, we would get regressions by canonicalizing
to +0.0 in all fcmp, and that's a step towards solving:
https://bugs.llvm.org/show_bug.cgi?id=39475
llvm-svn: 346143
Using TargetTransformInfo allows the splitting pass to factor in the
code size cost of instructions as it decides whether or not outlining is
profitable.
This did not regress the overall amount of outlining seen on the handful
of internal frameworks I tested.
Thanks to Jun Bum Lim for suggesting this!
Differential Revision: https://reviews.llvm.org/D53835
llvm-svn: 346108
Summary:
-mldst-motion creates a new phi node without any debug info. Use the merged debug location from the incoming stores to fix this.
Fixes PR38177. The test case here is (somewhat) simplified from:
```
struct S {
int foo;
void fn(int bar);
};
void S::fn(int bar) {
if (bar)
foo = 1;
else
foo = 0;
}
```
Reviewers: dblaikie, gbedwell, aprantl, vsk
Reviewed By: vsk
Subscribers: vsk, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D54019
llvm-svn: 346027
Fix PR39417, PR39497
The loop vectorizer may generate runtime SCEV checks for overflow and stride==1
cases, leading to execution of original scalar loop. The latter is forbidden
when optimizing for size. An assert introduced in r344743 triggered the above
PR's showing it does happen. This patch fixes this behavior by preventing
vectorization in such cases.
Differential Revision: https://reviews.llvm.org/D53612
llvm-svn: 345959
This patch factors out a function that makes all required updates
whenever an instruction gets erased.
Differential Revision: https://reviews.llvm.org/D54011
Reviewed By: apilipenko
llvm-svn: 345914
Inner-loop only reductions require additional checks to make sure they
form a load-phi-store cycle across inner and outer loop. Otherwise the
reduction value is not properly preserved. This patch disables
interchanging such loops for now, as it causes miscompiles in some
cases and it seems to apply only for a tiny amount of loops. Across the
test-suite, SPEC2000 and SPEC2006, 61 instead of 62 loops are
interchange with inner loop reduction support disabled. With
-loop-interchange-threshold=-1000, 3256 instead of 3267.
See the discussion and history of D53027 for an outline of how such legality
checks could look like.
Reviewers: efriedma, mcrosier, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D53027
llvm-svn: 345877
Clang's -Wimplicit-fallthrough implementation warns on this. I built
clang with GCC 7.3 in +asserts and -asserts mode, and GCC doesn't warn
on this in either configuration. I think it is unnecessary. I separated
it from the large mechanical patch (https://reviews.llvm.org/D53950) in
case I am wrong and it has to be reverted.
llvm-svn: 345876
When rewriting loop exit values, IndVars considers this transform not profitable if
the loop instruction has a loop user which it believes cannot be optimized away.
In current implementation only calls that immediately use the instruction are considered
as such.
This patch extends the definition of "hard" users to any side-effecting instructions
(which usually cannot be optimized away from the loop) and also allows handling
of not just immediate users, but use chains.
Differentlai Revision: https://reviews.llvm.org/D51584
Reviewed By: etherzhhb
llvm-svn: 345814
The 'OLT' case was updated at rL266175, so I assume it was just an
oversight that 'UGE' was not included because that patch handled
both predicates in InstSimplify.
llvm-svn: 345727
Unlike its legacy counterpart new pass manager's LoopUnrollPass does
not provide any means to select which flavors of unroll to run
(runtime, peeling, partial), relying on global defaults.
In some cases having ability to run a restricted LoopUnroll that
does more than LoopFullUnroll is needed.
Introduced LoopUnrollOptions to select optional unroll behaviors.
Added 'unroll<peeling>' to PassRegistry mainly for the sake of testing.
Reviewers: chandlerc, tejohnson
Differential Revision: https://reviews.llvm.org/D53440
llvm-svn: 345723
For some unclear reason rewriteLoopExitValues considers recalculation
after the loop profitable if it has some "soft uses" outside the loop (i.e. any
use other than call and return), even if we have proved that it has a user inside
the loop which we think will not be optimized away.
There is no existing unit test that would explain this. This patch provides an
example when rematerialisation of exit value is not profitable but it passes
this check due to presence of a "soft use" outside the loop.
It makes no sense to recalculate value on exit if we are going to compute it
due to some irremovable within the loop. This patch disallows applying this
transform in the described situation.
Differential Revision: https://reviews.llvm.org/D51581
Reviewed By: etherzhhb
llvm-svn: 345708
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
Turns out it's not always possible to figure out whether an asm()
statement argument points to a valid memory region.
One example would be per-CPU objects in the Linux kernel, for which the
addresses are calculated using the FS register and a small offset in the
.data..percpu section.
To avoid pulling all sorts of checks into the instrumentation, we replace
actual checking/unpoisoning code with calls to
msan_instrument_asm_load(ptr, size) and
msan_instrument_asm_store(ptr, size) functions in the runtime.
This patch doesn't implement the runtime hooks in compiler-rt, as there's
been no demand in assembly instrumentation for userspace apps so far.
llvm-svn: 345702
InstCombine features an optimization that essentially replaces:
if (a)
free(a)
into:
free(a)
Right now, this optimization is gated by the minsize attribute and therefore
we only perform it if we can prove that we are going to be able to eliminate
the branch and the destination block.
However when casts are involved the optimization would fail to apply, because
the optimization was not smart enough to realize that it is possible to also
move the casts away from the destination block and that is harmless to the
performance since they are just noops.
E.g.,
foo(int *a)
if (a)
free((char*)a)
Wouldn't be optimized by instcombine, because
- We would refuse to hoist the `bitcast i32* %a to i8` in the source block
- We would fail to see that `bitcast i32* %a to i8` and %a are the same value.
This patch fixes both these problems:
- It teaches the pattern matching of the comparison how to look
through casts.
- It checks that whether the additional instruction in the destination block
can be hoisted and are harmless performance-wise.
- It hoists all the code of the destination block in the source block.
Differential Revision: D53356
llvm-svn: 345644
Correct costings of SK_ExtractSubvector requires the SubTy argument to indicate the type/size of the extracted subvector.
Unlike the rest of the shuffle kinds this means that the main Ty argument represents the source vector type not the destination!
I've done my best to fix a number of vectorizer uses:
SLP - the reduction epilogue costs should be using a SK_PermuteSingleSrc shuffle as these all occur at the hardware vector width - we're not extracting (illegal) subvector types. This is causing the cost model diffs as SK_ExtractSubvector costs are poorly handled and tend to just return 1 at the moment.
LV - I'm not clear on what the SK_ExtractSubvector should represents for recurrences - I've used a <1 x ?> subvector extraction as that seems to match the VF delta.
Differential Revision: https://reviews.llvm.org/D53573
llvm-svn: 345617
shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
The motivating case is at least a couple of steps away: I noticed that
SLPVectorizer does not analyze shuffles as well as sequences of
insert/extract in PR34724:
https://bugs.llvm.org/show_bug.cgi?id=34724
...so SLP may fail to vectorize when source code has shuffles to start
with or instcombine has converted insert/extract to shuffles.
Independent of that, an insertelement is always a simpler op for IR
analysis vs. a shuffle, so we should transform to insert when possible.
I don't think there's any codegen concern here - if a target can't insert
a scalar directly to some fixed element in a vector (x86?), then this
should get expanded to the insert+shuffle that we started with.
Differential Revision: https://reviews.llvm.org/D53507
llvm-svn: 345607
This commit is a combination of two patches:
* "Fix in getScalarizationOverhead()"
If target returns false in TTI.prefersVectorizedAddressing(), it means the
address registers will not need to be extracted. Therefore, there should
be no operands scalarization overhead for a load instruction.
* "Don't pass the instruction pointer from getMemInstScalarizationCost."
Since VF is always > 1, this is a cost query for an instruction in the
vectorized loop and it should not be evaluated within the scalar
context of the instruction.
Review: Ulrich Weigand, Hal Finkel
https://reviews.llvm.org/D52351https://reviews.llvm.org/D52417
llvm-svn: 345603
This fixes an assertion when constant folding a GEP when the part of the offset
was in i32 (IndexSize, as per DataLayout) and part in the i64 (PointerSize) in
the newly created test case.
Differential Revision: https://reviews.llvm.org/D52609
llvm-svn: 345585
It can be profitable to outline single-block cold regions because they
may be large.
Allow outlining single-block regions if they have over some threshold of
non-debug, non-terminator instructions. I chose 3 as the threshold after
experimenting with several internal frameworks.
In practice, reducing the threshold further did not give much
improvement, whereas increasing it resulted in substantial regressions.
Differential Revision: https://reviews.llvm.org/D53824
llvm-svn: 345524
As K has to dominate I, IIUC I's range metadata must be a subset of
K's. After Eli's recent clarification to the LangRef, loading a value
outside of the range is undefined behavior.
Therefore if I's range contains elements outside of K's range and we would load
one such value, K would cause undefined behavior.
In cases like hoisting/sinking, we still want the most generic range
over all code paths to/from the hoist/sink point. As suggested in the
patches related to D47339, I will refactor the handling of those
scenarios and try to decouple it from this function as follow up, once
we switched to a similar handling of metadata in most of
combineMetadata.
I updated some tests checking mostly the merging of metadata to keep the
metadata of to dominating load. The most interesting one is probably test8 in
test/Transforms/JumpThreading/thread-loads.ll. It contained a comment
about the alias metadata preventing us to eliminate the branch, but it
seem like the actual problem currently is that we merge the ranges of
both loads and cannot eliminate the icmp afterwards. With this patch, we
manage to eliminate the icmp, as the range of the first load excludes 8.
Reviewers: efriedma, nlopes, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D51629
llvm-svn: 345456
This reverts commit 8d6af840396f2da2e4ed6aab669214ae25443204 and commit
b78d19c287b6e4a9abc9fb0545de9a3106d38d3d which causes slower build times
by initializing the AddressSanitizer on every function run.
The corresponding revisions are https://reviews.llvm.org/D52814 and
https://reviews.llvm.org/D52739.
llvm-svn: 345433
Summary:
The visitICmp analysis function would record compares of pointer types, as size 0. This causes the resulting memcmp() call to have the wrong total size.
Found with "self-build" of clang/LLVM on Windows.
Reviewers: christylee, trentxintong, courbet
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53536
llvm-svn: 345413
This patch adds support of `llvm.experimental.guard` intrinsics to non-trivial
simple loop unswitching. These intrinsics represent implicit control flow which
has pretty much the same semantics as usual conditional branches. The
algorithm of dealing with them is following:
- Consider guards as unswitching candidates;
- If a guard is considered the best candidate, turn it into a branch;
- Apply normal unswitching algorithm on this branch.
The patch has no compile time effect on code that does not contain any guards.
Differential Revision: https://reviews.llvm.org/D53744
Reviewed By: chandlerc
llvm-svn: 345387
We should be able to make all relevant checks before we actually start the non-trivial
unswitching, so that we could guarantee that once we have started the transform,
it will always succeed.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D53747
llvm-svn: 345375
Replacing BinaryOperator::isFNeg(...) to avoid regressions when we
separate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53650
llvm-svn: 345295
When SimplifyCFG changes the PHI node into a select instruction, the debug line records becomes ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53287
llvm-svn: 345250
The current splitting algorithm works in three stages:
1) Identify cold blocks, then
2) Use forward/backward propagation to mark hot blocks, then
3) Grow a SESE region of blocks *outside* of the set of hot blocks and
start outlining.
While testing this pass on Apple internal frameworks I noticed that some
kinds of control flow (e.g. loops) are never outlined, even though they
unconditionally lead to / follow cold blocks. I noticed two other issues
related to how cold regions are identified:
- An inconsistency can arise in the internal state of the hotness
propagation stage, as a block may end up in both the ColdBlocks set
and the HotBlocks set. Further inconsistencies can arise as these sets
do not match what's in ProfileSummaryInfo.
- It isn't necessary to limit outlining to single-exit regions.
This patch teaches the splitting algorithm to identify maximal cold
regions and outline them. A maximal cold region is defined as the set of
blocks post-dominated by a cold sink block, or dominated by that sink
block. This approach can successfully outline loops in the cold path. As
a side benefit, it maintains less internal state than the current
approach.
Due to a limitation in CodeExtractor, blocks within the maximal cold
region which aren't dominated by a single entry point (a so-called "max
ancestor") are filtered out.
Results:
- X86 (LNT + -Os + externals): 134KB of TEXT were outlined compared to
47KB pre-patch, or a ~3x improvement. Did not see a performance impact
across two runs.
- AArch64 (LNT + -Os + externals + Apple-internal benchmarks): 149KB
of TEXT were outlined. Ditto re: performance impact.
- Outlining results improve marginally in the internal frameworks I
tested.
Follow-ups:
- Outline more than once per function, outline large single basic
blocks, & try to remove unconditional branches in outlined functions.
Differential Revision: https://reviews.llvm.org/D53627
llvm-svn: 345209
Summary:
The current default of appending "_"+entry block label to the new
extracted cold function breaks demangling. Change the deliminator from
"_" to "." to enable demangling. Because the header block label will
be empty for release compile code, use "extracted" after the "." when
the label is empty.
Additionally, add a mechanism for the client to pass in an alternate
suffix applied after the ".", and have the hot cold split pass use
"cold."+Count, where the Count is currently 1 but can be used to
uniquely number multiple cold functions split out from the same function
with D53588.
Reviewers: sebpop, hiraditya
Subscribers: llvm-commits, erik.pilkington
Differential Revision: https://reviews.llvm.org/D53534
llvm-svn: 345178
The original patch was committed here:
rL344609
...and reverted:
rL344612
...because it did not properly check/test data types before calling
ComputeNumSignBits().
The tests that caused bot failures for the previous commit are
over-reaching front-end tests that run the entire -O optimizer
pipeline:
Clang :: CodeGen/builtins-systemz-zvector.c
Clang :: CodeGen/builtins-systemz-zvector2.c
I've added a negative test here to ensure coverage for that case.
The new early exit check also tests the type of the 'B' parameter,
so we don't waste time on matching if either value is unsuitable.
Original commit message:
This is part of solving PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The patterns shown here are a special case of something
that we already convert to select. Using ComputeNumSignBits()
catches that case (but not the more complicated motivating
patterns yet).
The backend has hooks/logic to convert back to logic ops
if that's better for the target.
llvm-svn: 345149
This work is to avoid regressions when we seperate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53205
llvm-svn: 345146
masked-interleaving is enabled
Enable interleave-groups under fold-tail scenario for Opt for size compilation;
D50480 added support for vectorizing loops of arbitrary trip-count without a
remiander, which in turn makes everything in the loop conditional, including
interleave-groups if any. It therefore invalidated all interleave-groups
because we didn't have support for vectorizing predicated interleaved-groups
at the time. In the meantime, D53011 introduced this support, so we don't
have to invalidate interleave-groups when masked-interleaved support is enabled.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: hsaito
Differential Revision: https://reviews.llvm.org/D53559
llvm-svn: 345115
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 345114
in the same round of SCC update.
In https://reviews.llvm.org/rL309784, inline history is added to prevent
infinite inlining across multiple run of inliner and SCC update, but the
history will only be kept when new SCC is actually generated during SCC update.
We found a case that SCC can be split and then merge into itself in the same
round of SCC update, so the same SCC will be pop out from UR.CWorklist and
then added back immediately, without any new SCC generated, that is why the
existing patch cannot catch the infinite inline case.
What the patch does is even if no new SCC is generated, if only the current
SCC appears in UR.CWorklist again, then keep the inline history.
Differential Revision: https://reviews.llvm.org/D52915
llvm-svn: 345103
Outlined code is cold by assumption, so it makes sense to optimize it
for minimal code size rather than performance.
After r344869 moved the splitting pass to the end of the IR pipeline,
this does not result in much of a code size reduction. This is probably
because a comparatively small number backend transforms make use of the
MinSize hint.
Running LNT on x86_64, I see that 33/1020 binaries shrink for a total of
919 bytes of TEXT reduction. I didn't measure a significant performance
impact.
Differential Revision: https://reviews.llvm.org/D53518
llvm-svn: 345072
There's probably some vector-with-undef-element pattern
that shows an improvement, so this is probably not quite
'NFC'.
This is the last step towards removing the fake binop
queries for not/neg. Ie, there are no more uses of those
functions in trunk. Fneg should follow.
llvm-svn: 345050
Summary:
TryToShrinkGlobalToBoolean, when possible, will split store <value> + load <value> into store <bool> + select <bool ? value : 0>. This preserves DebugLoc during that pass.
Fixes PR37959. The test case here is the simplified .ll for:
```
static int foo;
int bar() {
foo = 5;
return foo;
}
```
Reviewers: dblaikie, gbedwell, aprantl
Reviewed By: dblaikie
Subscribers: mehdi_amini, JDevlieghere, dexonsmith, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D53531
llvm-svn: 345046
We need to update this code before introducing an 'fneg' instruction in IR,
so we might as well kill off the integer neg/not queries too.
This is no-functional-change-intended for scalar code and most vector code.
For vectors, we can see that the 'match' API allows for undef elements in
constants, so we optimize those cases better.
Ideally, there would be a test for each code diff, but I don't see evidence
of that for the existing code, so I didn't try very hard to come up with new
vector tests for each code change.
Differential Revision: https://reviews.llvm.org/D53533
llvm-svn: 345042
Expand arithmetic reduction to include mul/and/or/xor instructions.
This patch just fixes the SLPVectorizer - the effective reduction costs for AVX1+ are still poor (see rL344846) and will need to be improved before SLP sees this as a valid transform - but we can already see the effect on SSE2 tests.
This partially helps PR37731, but doesn't fix it all as it still falls over on the extraction/reduction order for some reason.
Differential Revision: https://reviews.llvm.org/D53473
llvm-svn: 345037
This pass could probably be modified slightly to allow
vector splat transforms for practically no cost, but
it only works on scalars for now. So the use of the
newer 'match' API should make no functional difference.
llvm-svn: 345030
Summary:
At compile-time, create an array of {PC,HumanReadableStackFrameDescription}
for every function that has an instrumented frame, and pass this array
to the run-time at the module-init time.
Similar to how we handle pc-table in SanitizerCoverage.
The run-time is dummy, will add the actual logic in later commits.
Reviewers: morehouse, eugenis
Reviewed By: eugenis
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D53227
llvm-svn: 344985
optimizing for size
LV is careful to respect -Os and not to create a scalar epilog in all cases
(runtime tests, trip-counts that require a remainder loop) except for peeling
due to gaps in interleave-groups. This patch fixes that; -Os will now have us
invalidate such interleave-groups and vectorize without an epilog.
The patch also removes a related FIXME comment that is now obsolete, and was
also inaccurate:
"FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a smaller
MaxVF that does not require a scalar epilog."
(requiresScalarEpilog() has nothing to do with VF).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53420
llvm-svn: 344883
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.
Reviewers: sebpop, vsk
Reviewed By: sebpop, vsk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D53437
llvm-svn: 344869
I couldn't tell from svn history when these checks were added,
but it pre-dates the split of instcombine into its own directory
at rL92459.
The motivation for changing the check is partly shown by the
code in PR34724:
https://bugs.llvm.org/show_bug.cgi?id=34724
There are also existing regression tests for SLPVectorizer with
sequences of extract+insert that are likely assumed to become
shuffles by the vectorizer cost models.
llvm-svn: 344854
When optimizing for size, a loop is vectorized only if the resulting vector loop
completely replaces the original scalar loop. This holds if no runtime guards
are needed, if the original trip-count TC does not overflow, and if TC is a
known constant that is a multiple of the VF. The last two TC-related conditions
can be overcome by
1. rounding the trip-count of the vector loop up from TC to a multiple of VF;
2. masking the vector body under a newly introduced "if (i <= TC-1)" condition.
The patch allows loops with arbitrary trip counts to be vectorized under -Os,
subject to the existing cost model considerations. It also applies to loops with
small trip counts (under -O2) which are currently handled as if under -Os.
The patch does not handle loops with reductions, live-outs, or w/o a primary
induction variable, and disallows interleave groups.
(Third, final and main part of -)
Differential Revision: https://reviews.llvm.org/D50480
llvm-svn: 344743
Summary:
In several places in the code we use the following pattern:
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
[...]
}
In short, we check if there is a lib-function for a certain type, and then
we _always_ fetch the name of the "double" version of the lib function and
construct a call to the appropriate function, that we just checked exists,
using that "double" name as a basis.
This is of course a problem in cases where the target doesn't support the
"double" version, but e.g. only the "float" version.
In that case TLI.getName(LibFunc_tan) returns "", and
emitUnaryFloatFnCall happily appends an "f" to "", and we erroneously end
up with a call to a function called "f".
To solve this, the above pattern is changed to
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
[...]
}
I.e instead of first fetching the name of the "double" version and then
letting emitUnaryFloatFnCall() add the final "f" or "l", we let
emitUnaryFloatFnCall() fetch the right name from TLI.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D53370
llvm-svn: 344725
Summary:
Previously we could only get the number of imported functions and
variables from the backend. This adds stats to the thin link where the
importing is decided.
Reviewers: wmi
Subscribers: inglorion, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53337
llvm-svn: 344658
Summary:
Merge code used to get section start and section end pointers
for SanitizerCoverage constructors. This includes code that handles
getting the start pointers when targeting MSVC.
Reviewers: kcc, morehouse
Reviewed By: morehouse
Subscribers: kcc, hiraditya
Differential Revision: https://reviews.llvm.org/D53211
llvm-svn: 344657
Summary:
Teach vectorizer about vectorizing variant value stores to uniform
address. Similar to rL343028, we do not allow vectorization if we have
multiple stores to the same uniform address.
Cost model already has the change for considering the extract
instruction cost for a variant value store. See added test cases for how
vectorization is done.
The patch also contains changes to the ORE messages.
Reviewers: Ayal, mkuper, anemet, hsaito
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D52656
llvm-svn: 344613
I noticed a missing check and added it at rL344610, but there actually
are codegen tests that will fail without that, so I'll edit those and
submit a fixed patch with more tests.
llvm-svn: 344612
This is part of solving PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The patterns shown here are a special case of something
that we already convert to select. Using ComputeNumSignBits()
catches that case (but not the more complicated motivating
patterns yet).
The backend has hooks/logic to convert back to logic ops
if that's better for the target.
llvm-svn: 344609
Summary:
Extend LCSSA so that debug values outside loops are rewritten to
use the PHI nodes that the pass creates.
This fixes PR39019. In that case, we ran LCSSA on a loop that
was later on vectorized, which left us with something like this:
for.cond.cleanup:
%add.lcssa = phi i32 [ %add, %for.body ], [ %34, %middle.block ]
call void @llvm.dbg.value(metadata i32 %add,
ret i32 %add.lcssa
for.body:
%add =
[...]
br i1 %exitcond, label %for.cond.cleanup, label %for.body
which later resulted in the debug.value becoming undef when
removing the scalar loop (and the location would have probably
been wrong for the vectorized case otherwise).
As we now may need to query the AvailableVals cache more than
once for a basic block, FindAvailableVals() in SSAUpdaterImpl is
changed so that it updates the cache for blocks that we do not
create a PHI node for, regardless of the block's number of
predecessors. The debug value in the attached IR reproducer
would not be properly rewritten without this.
Debug values residing in blocks where we have not inserted any
PHI nodes are currently left as-is by this patch. I'm not sure
what should be done with those uses.
Reviewers: mattd, aprantl, vsk, probinson
Reviewed By: mattd, aprantl
Subscribers: jmorse, gbedwell, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D53130
llvm-svn: 344589
r344558 added an assignment to a TerminatorInst* from
BasicBlock::getTerminatorInst(), but BasicBlock::getTerminatorInst() returns an
Instruction* rather than a TerminatorInst* since r344504 so this fails to
compile.
Changing the variable to an Instruction* should get the bots building again.
llvm-svn: 344566
Make the code of blockEndsInUnreachable to match the function
blockEndsInUnreachable in CodeGen/BranchFolding.cpp. I also have
added a note to make sure the code of this function will not be
modified unless the back-end version is also modified.
An early return before outlining has been added to avoid
outlining the full function body when the first block in the
function is marked cold.
The static analysis of cold code has been amended to avoid
marking the whole function as cold by back-propagation
because the back-propagation would mark blocks with return
statements as cold.
The patch adds debug statements to help discover these problems.
Differential Revision: https://reviews.llvm.org/D52904
llvm-svn: 344558
Variable updates within the outlined function are invisible to
debuggers. This could be improved by defining a DISubprogram for the
new function. For the moment, simply erase the debug intrinsics instead.
This fixes verifier failures about function-local metadata being used in
the wrong function, seen while testing the hot/cold splitting pass.
rdar://45142482
Differential Revision: https://reviews.llvm.org/D53267
llvm-svn: 344545
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
are terminators without relying on the specific `TerminatorInst` type.
This required cleaning up two users of `InstVisitor`s usage of
`TerminatorInst` as well.
llvm-svn: 344503
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
This is the last interesting usage in all of LLVM's headers. The
remaining usages in headers are the core typesystem bits (Core.h,
instruction types, and InstVisitor) and as the return of
`BasicBlock::getTerminator`. The latter is the big remaining API point
that I'll remove after mass updates to user code.
llvm-svn: 344501
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
Landing this as a separate part of https://reviews.llvm.org/D50480, being a
seemingly unrelated change ([LV] Vectorizing loops of arbitrary trip count
without remainder under opt for size).
llvm-svn: 344483
This is part of the missing IR-level folding noted in D52912.
This should be ok as a canonicalization because the new shuffle mask can't
be any more complicated than the existing shuffle mask. If there's some
target where the shorter vector shuffle is not legal, it should just end up
expanding to something like the pair of shuffles that we're starting with here.
Differential Revision: https://reviews.llvm.org/D53037
llvm-svn: 344476
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Summary:
GetOrCreateFunctionComdat is currently used in SanitizerCoverage,
where it's defined. I'm planing to use it in HWASAN as well,
so moving it into a common location.
NFC
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53218
llvm-svn: 344433
Summary:
Linking with the /OPT:REF linker flag when building COFF files causes
the linker to strip SanitizerCoverage's constructors. Prevent this by
giving the constructors WeakODR linkage and by passing the linker a
directive to include sancov.module_ctor.
Include a test in compiler-rt to verify libFuzzer can be linked using
/OPT:REF
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: rnk, morehouse, hiraditya
Differential Revision: https://reviews.llvm.org/D52119
llvm-svn: 344391
Summary:
Otherwise, at least on Mac, the linker eliminates unused symbols which
causes libFuzzer to error out due to a mismatch of the sizes of coverage tables.
Issue in Chromium: https://bugs.chromium.org/p/chromium/issues/detail?id=892167
Reviewers: morehouse, kcc, george.karpenkov
Reviewed By: morehouse
Subscribers: kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D53113
llvm-svn: 344345
Summary:
We have two copies of createPrivateGlobalForString (in asan and in esan).
This change merges them into one. NFC
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53178
llvm-svn: 344314
This patch ports the legacy pass manager to the new one to take advantage of
the benefits of the new PM. This involved moving a lot of the declarations for
`AddressSantizer` to a header so that it can be publicly used via
PassRegistry.def which I believe contains all the passes managed by the new PM.
This patch essentially decouples the instrumentation from the legacy PM such
hat it can be used by both legacy and new PM infrastructure.
Differential Revision: https://reviews.llvm.org/D52739
llvm-svn: 344274
InstCombine keeps a worklist and assumes that optimizations don't
eraseFromParent() the instruction, which SimplifyLibCalls violates. This change
adds a new callback to SimplifyLibCalls to let clients specify their own hander
for erasing actions.
Differential Revision: https://reviews.llvm.org/D52729
llvm-svn: 344251
This is the umin alternative to the umax code from rL344237. We use
DeMorgans law on the umax case to bring us to the same thing on umin,
but using countLeadingOnes, not countLeadingZeros.
Differential Revision: https://reviews.llvm.org/D53036
llvm-svn: 344239
Use the demanded bits of umax(A,C) to prove we can just use A so long as the
lowest non-zero bit of DemandMask is higher than the highest non-zero bit of C
Differential Revision: https://reviews.llvm.org/D53033
llvm-svn: 344237
We assign indices sequentially for seen instructions, so we can just use
a vector and push back the seen instructions. No need for using a
DenseMap.
Reviewers: hsaito, rengolin, nadav, dcaballe
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D53089
llvm-svn: 344233
We can avoid doing some unnecessary work by skipping debug instructions
in a few loops. It also helps to ensure debug instructions do not
prevent vectorization, although I do not have any concrete test cases
for that.
Reviewers: rengolin, hsaito, dcaballe, aprantl, vsk
Reviewed By: rengolin, dcaballe
Differential Revision: https://reviews.llvm.org/D53091
llvm-svn: 344232
Summary:
Right now there is no hit counter on the line of function.
So the idea is add the line of the function to all the lines covered by the entry block.
Tests in compiler-rt/profile will be fixed in another patch: https://reviews.llvm.org/D49854
Reviewers: marco-c, davidxl
Reviewed By: marco-c
Subscribers: sylvestre.ledru, llvm-commits
Differential Revision: https://reviews.llvm.org/D49853
llvm-svn: 344228
There is a transform that may replace `lshr (x+1), 1` with `lshr x, 1` in case
if it can prove that the result will be the same. However the initial instruction
might have an `exact` flag set, and it now should be dropped unless we prove
that it may hold. Incorrectly set `exact` attribute may then produce poison.
Differential Revision: https://reviews.llvm.org/D53061
Reviewed By: sanjoy
llvm-svn: 344223
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
This is the LLVM side of Clang r344199.
Reviewers: davidxl, tejohnson, dlj, erik.pilkington
Subscribers: mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51249
llvm-svn: 344200
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
I've added a new test case that causes the scalarizer to try and use
dead-and-erased values - caused by the basic blocks not being in
domination order within the function. To fix this, instead of iterating
through the blocks in function order, I walk them in reverse post order.
Differential Revision: https://reviews.llvm.org/D52540
llvm-svn: 344128
When SimplifyCFG changes the PHI node into a select instruction, the debug line records becomes ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D52887
llvm-svn: 344120
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
In r339636 the alias analysis rules were changed with regards to tail calls
and byval arguments. Previously, tail calls were assumed not to alias
allocas from the current frame. This has been updated, to not assume this
for arguments with the byval attribute.
This patch aligns TailCallElim with the new rule. Tail marking can now be
more aggressive and mark more calls as tails, e.g.:
define void @test() {
%f = alloca %struct.foo
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test2(%struct.foo* byval %f) {
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test3(%struct.foo* byval %f) {
%agg.tmp = alloca %struct.foo
%0 = bitcast %struct.foo* %agg.tmp to i8*
%1 = bitcast %struct.foo* %f to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* %1, i64 40, i1 false)
call void @bar(%struct.foo* byval %agg.tmp)
ret void
}
The problematic case where a byval parameter is captured by a call is still
handled correctly, and will not be marked as a tail (see PR7272).
llvm-svn: 343986
Summary:
If we have a symbol with (linkonce|weak)_odr linkage, we do not want
to dead strip it even it is not prevailing.
IR level (linkonce|weak)_odr symbol can become non-prevailing when we mix
ELF objects and IR objects where the (linkonce|weak)_odr symbol in the ELF
object is prevailing and the ones in the IR objects are not. Stripping
them will prevent us from doing optimizations with them.
By not dead stripping them, We will convert these symbols to
available_externally linkage as a result of non-prevailing and eventually
dropping them after inlining.
I modified cache-prevailing.ll to use linkonce linkage as it is
testing whether cache prevailing bit is effective or not, not
we should treat linkonce_odr alive or not
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52893
llvm-svn: 343970
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
Currently running the @insertelem_after_gep function below through the InstCombine pass with opt produces invalid IR.
Input:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t1 = bitcast <16 x i32>* %t0 to [16 x i32]*
%t2 = addrspacecast [16 x i32]* %t1 to [16 x i32] addrspace(3)*
%t3 = getelementptr inbounds [16 x i32], [16 x i32] addrspace(3)* %t2, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @extern_vec_pointers_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Output:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
%t3 = getelementptr inbounds <16 x i32>, <16 x i32>* %t0, i64 0, i64 0
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
call void @my_extern_func(<16 x i32 addrspace(3)*> %t4)
ret void
}
```
Which although causes no complaints when produced, isn't valid IR as the insertelement use of the %t3 GEP expects an address space.
```
opt: /tmp/bad.ll:52:73: error: '%t3' defined with type 'i32*' but expected 'i32 addrspace(3)*'
%t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
```
I've fixed this by adding an addrspacecast after the GEP in the InstCombine pass, and including a check for this type mismatch to the verifier.
Reviewers: spatel, lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52294
llvm-svn: 343956
At the point when we perform `emitTransformedIndex`, we have a broken IR (in
particular, we have Phis for which not every incoming value is properly set). On
such IR, it is illegal to create SCEV expressions, because their internal
simplification process may try to prove some predicates and break when it
stumbles across some broken IR.
The only purpose of using SCEV in this particular place is attempt to simplify
the generated code slightly. It seems that the result isn't worth it, because
some trivial cases (like addition of zero and multiplication by 1) can be
handled separately if needed, but more generally InstCombine is able to achieve
the goals we want to achieve by using SCEV.
This patch fixes a functional crash described in PR39160, and as side-effect it
also generates a bit smarter code in some simple cases. It also may cause some
optimality loss (i.e. we will now generate `mul` by power of `2` instead of
shift etc), but there is nothing what InstCombine could not handle later. In
case of dire need, we can support more trivial cases just in place.
Note that this patch only fixes one particular case of the general problem that
LV misuses SCEV, attempting to create SCEVs or prove predicates on invalid IR.
The general solution, however, seems complex enough.
Differential Revision: https://reviews.llvm.org/D52881
Reviewed By: fhahn, hsaito
llvm-svn: 343954
Call getOperandInfo() instead of using (near) duplicated code in
LoopVectorizationCostModel::getInstructionCost().
This gets the OperandValueKind and OperandValueProperties values for a Value
passed as operand to an arithmetic instruction.
getOperandInfo() used to be a static method in TargetTransformInfo.cpp, but
is now instead a public member.
Review: Florian Hahn
https://reviews.llvm.org/D52883
llvm-svn: 343852
Summary:
At some point in the past the recursion in DominatesMergePoint used to pass null for AggressiveInsts as part of the recursion. It no longer does this. So there is no way for AggressiveInsts to be null.
This passes it by reference and removes the null check to make this explicit.
Reviewers: efriedma, reames
Reviewed By: efriedma
Subscribers: xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D52575
llvm-svn: 343828
We established the (unfortunately complicated) rules for UB/poison
propagation with vector ops in:
D48893
D48987
D49047
It's clear from the affected tests that we are potentially creating
poison where none existed before the transforms. For add/sub/mul,
the answer is simple: just drop the flags because the extra undef
vector lanes are generally more valuable for analysis and codegen.
llvm-svn: 343819
Summary:
The llvm::SimplifyCFG function creates a SimplifyCFGOpt object and calls run on it. There were numerous places reached from this run function that called back out llvm::SimplifyCFG which would create another SimplifyCFGOpt object. This is an inefficient use of stack space at minimum. We are also not passing along the LoopHeaders pointer passed into the outer llvm::SimplifyCFG call. So if its not null we lose it on the first recursion and get nullptr from there on.
This patch adds an outer loop around the main BasicBlock simplifying code and adds a flag to the SimplifyCFGOpt class that can be set by to request another iteration. I don't think we can iterate based just on the change flag alone since some of the simplifications delete a basic block entirely leaving nothing to iterate on.
Reviewers: bogner, eli.friedman, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52760
llvm-svn: 343816
This is a follow-up to rL343482 / D52439.
This was a pattern that initially caused the commit to be reverted because
the transform requires a bitcast as shown here.
llvm-svn: 343794
We're a long way from D50992 and D51553, but this is where we have to start.
We weren't back-propagating undefs into binop constant values for anything but
add/sub/mul/and/or/xor.
This is likely because we have to be careful about not introducing UB/poison
with div/rem/shift. But I suspect we already are getting the poison part wrong
for add/sub/mul (although it may not be possible to expose the bug currently
because we use SimplifyDemandedVectorElts from a limited set of opcodes).
See the discussion/implementation from D48987 and D49047.
This patch just enables functionality for FP ops because those do not have
UB/poison potential.
llvm-svn: 343727
1. Fix include ordering.
2. Improve variable name (width is bitwidth not number-of-elements).
3. Add local Opcode variable to reduce code duplication.
llvm-svn: 343694
Modified the testcases to use both pass managers
Use single commandline flag for both pass managers.
Differential Revision: https://reviews.llvm.org/D52708
Reviewers: sebpop, tejohnson, brzycki, SirishP
Reviewed By: tejohnson, brzycki
llvm-svn: 343662
This is an attempt to get out of a local-minimum that instcombine currently
gets stuck in. We essentially combine two optimisations at once, ~a - ~b = b-a
and min(~a, ~b) = ~max(a, b), only doing the transform if the result is at
least neutral. This involves using IsFreeToInvert, which has been expanded a
little to include selects that can be easily inverted.
This is trying to fix PR35875, using the ideas from Sanjay. It is a large
improvement to one of our rgb to cmy kernels.
Differential Revision: https://reviews.llvm.org/D52177
llvm-svn: 343569
getNumUses is linear in the number of uses. Since we're looking for a specific use count, we can use hasNUses which will stop as soon as it determines there are more than N uses instead of walking all of them.
llvm-svn: 343550
This reverts commit r342387 as it's showing significant performance
regressions in a number of benchmarks. Followed up with the
committer and original thread with an example and will get performance
numbers before recommitting.
llvm-svn: 343522
Summary:
This is a continuation of the fix for PR34627 "InstCombine assertion at vector gep/icmp folding". (I just realized bugpoint had fuzzed the original test for me, so I had fixed another trigger of the same assert in adjacent code in InstCombine.)
This patch avoids optimizing an icmp (to look only at the base pointers) when the resulting icmp would have a different type.
The patch adds a testcase and also cleans up and shrinks the pre-existing test for the adjacent assert trigger.
Reviewers: lebedev.ri, majnemer, spatel
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52494
llvm-svn: 343486
This was originally committed at rL343407, but reverted at
rL343458 because it crashed trying to handle a case where
the destination type is FP. This version of the patch adds
a check for that possibility. Tests added at rL343480.
Original commit message:
This transform is requested for the backend in:
https://bugs.llvm.org/show_bug.cgi?id=39016
...but I figured it was worth doing in IR too, and it's probably
easier to implement here, so that's this patch.
In the simplest case, we are just truncating a scalar value. If the
extract index doesn't correspond to the LSBs of the scalar, then we
have to shift-right before the truncate. Endian-ness makes this tricky,
but hopefully the ASCII-art helps visualize the transform.
Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343482
This caused Chromium builds to fail with "Illegal Trunc" assertion.
See https://crbug.com/890723 for repro.
> This transform is requested for the backend in:
> https://bugs.llvm.org/show_bug.cgi?id=39016
> ...but I figured it was worth doing in IR too, and it's probably
> easier to implement here, so that's this patch.
>
> In the simplest case, we are just truncating a scalar value. If the
> extract index doesn't correspond to the LSBs of the scalar, then we
> have to shift-right before the truncate. Endian-ness makes this tricky,
> but hopefully the ASCII-art helps visualize the transform.
>
> Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343458
There are a few leftovers in rL343163 which span two lines. This commit
changes these llvm::sort(C.begin(), C.end, ...) to llvm::sort(C, ...)
llvm-svn: 343426
This transform is requested for the backend in:
https://bugs.llvm.org/show_bug.cgi?id=39016
...but I figured it was worth doing in IR too, and it's probably
easier to implement here, so that's this patch.
In the simplest case, we are just truncating a scalar value. If the
extract index doesn't correspond to the LSBs of the scalar, then we
have to shift-right before the truncate. Endian-ness makes this tricky,
but hopefully the ASCII-art helps visualize the transform.
Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343407
As noted in post-commit comments for D52548, the limitation on
increasing vector length can be applied by opcode.
As a first step, this patch only allows insertelement to be
widened because that has no logical downsides for IR and has
little risk of pessimizing codegen.
This may cause PR39132 to go into hiding during a full compile,
but that bug is not fixed.
llvm-svn: 343406
Summary: This patch adds bindings to C and Go for addCoroutinePassesToExtensionPoints, which is used to add coroutine passes to the correct locations in PassManagerBuilder.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: mehdi_amini, modocache, llvm-commits
Differential Revision: https://reviews.llvm.org/D51642
llvm-svn: 343336
InstCombine would propagate shufflevector insts that had wider output vectors onto
predecessors, which would sometimes push undef's onto the divisor of a div/rem and
result in bad codegen.
I've fixed this by just banning propagating shufflevector back if the result of
the shufflevector is wider than the input vectors.
Patch by: @sheredom (Neil Henning)
Differential Revision: https://reviews.llvm.org/D52548
llvm-svn: 343329
This patch turns LoopInterchange into a loop pass. It now only
considers top-level loops and tries to move the innermost loop to the
optimal position within the loop nest. By only looking at top-level
loops, we might miss a few opportunities the function pass would get
(e.g. if we have a loop nest of 3 loops, in the function pass
we might process loops at level 1 and 2 and move the inner most loop to
level 1, and then we process loops at levels 0, 1, 2 and interchange
again, because we now have a different inner loop). But I think it would
be better to handle such cases by picking the best inner loop from the
start and avoid re-visiting the same loops again.
The biggest advantage of it being a function pass is that it interacts
nicely with the other loop passes. Without this patch, there are some
performance regressions on AArch64 with loop interchanging enabled,
where no loops were interchanged, but we missed out on some other loop
optimizations.
It also removes the SimplifyCFG run. We are just changing branches, so
the CFG should not be more complicated, besides the additional 'unique'
preheaders this pass might create.
Reviewers: chandlerc, efriedma, mcrosier, javed.absar, xbolva00
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D51702
llvm-svn: 343308
When C is not zero and infinites are not allowed (C / X) > 0 is a sign
test. Depending on the sign of C, the predicate must be swapped.
E.g.:
foo(double X) {
if ((-2.0 / X) <= 0) ...
}
=>
foo(double X) {
if (X >= 0) ...
}
Patch by: @marels (Martin Elshuber)
Differential Revision: https://reviews.llvm.org/D51942
llvm-svn: 343228
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226