and will participate in overload resolution. Unify the instantiation
of CXXMethodDecls and CXXConstructorDecls, which had already gotten
out-of-sync.
llvm-svn: 79658
DeclaratorDecl contains a DeclaratorInfo* to keep type source info.
Subclasses of DeclaratorDecl are FieldDecl, FunctionDecl, and VarDecl.
EnumConstantDecl still inherits from ValueDecl since it has no need for DeclaratorInfo.
Decl/Sema interfaces accept a DeclaratorInfo as parameter but no DeclaratorInfo is created yet.
llvm-svn: 79392
FriendFunctionDecl, and create instances as appropriate.
The design of FriendFunctionDecl is still somewhat up in the air; you can
befriend arbitrary types of functions --- methods, constructors, etc. ---
and it's not clear that this representation captures that very well.
We'll have a better picture when we start consuming this data in access
control.
llvm-svn: 78653
Permit a class to friend its class members in C++ 98, as long as extensions
are enabled (and even when they aren't, only give an extwarn about it).
llvm-svn: 78332
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
1. Make it work correctly with anonymous unions.
2. Don't compute it if the warning isn't enabled.
3. Optimize the algorithm slightly to make it linear time in the
case where we don't produce any warnings.
llvm-svn: 76630
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193
This method is intended to eventually replace the individual
Type::getAsXXXType<> methods.
The motivation behind this change is twofold:
1) Reduce redundant implementations of Type::getAsXXXType() methods. Most of
them are basically copy-and-paste.
2) By centralizing the implementation of the getAs<Type> logic we can more
smoothly move over to Doug Gregor's proposed canonical type smart pointer
scheme.
Along with this patch:
a) Removed 'Type::getAsPointerType()'; now clients use getAs<PointerType>.
b) Removed 'Type::getAsBlockPointerTypE()'; now clients use getAs<BlockPointerType>.
llvm-svn: 76098
in their order of construction for each class and use it
to to check on propery order of base class construction
under -Wreorder option.
llvm-svn: 75270
Remove ASTContext parameter from DeclContext's methods. This change cascaded down to other Decl's methods and changes to call sites started "escalating".
Timings using pre-tokenized "cocoa.h" showed only a ~1% increase in time run between and after this commit.
llvm-svn: 74506
templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
C++. This logic is required to trigger implicit instantiation of
function templates and member functions of class templates, which will
be implemented separately.
This commit includes support for -Wunused-parameter, printing warnings
for named parameters that are not used within a function/Objective-C
method/block. Fixes <rdar://problem/6505209>.
llvm-svn: 73797
parser. Rather than placing all of the delayed member function
declarations and inline definitions into a single bucket corresponding
to the top-level class, we instead mirror the nesting structure of the
nested classes and place the delayed member functions into their
appropriate place. Then, when we actually parse the delayed member
function declarations, set up the scope stack the same way as it was
when we originally saw the declaration, so that we can find, e.g.,
template parameters that are in scope.
llvm-svn: 72502
an integral constant expression, maintain a cache of the value and the
is-an-ICE flag within the VarDecl itself. This eliminates
exponential-time behavior of the Fibonacci template metaprogram.
llvm-svn: 72428
statement was using an rvalue reference during the template
definition. However, template instantiations based on an lvalue
reference type are well-formed, so we delay checking of these property
until template instantiation time.
llvm-svn: 72041
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:
template<typename T, typename U>
struct X {
typedef T type;
X* x1; // current instantiation
X<T, U> *x2; // current instantiation
X<U, T> *x3; // not current instantiation
::X<type, U> *x4; // current instantiation
X<typename X<type, U>::type, U>: *x5; // current instantiation
};
llvm-svn: 71471
into the left-hand side of an assignment expression. This completes
most of PR3500; the only remaining part is to deal with the
GCC-specific implementation-defined behavior for "unsigned long" (and
other) bit-fields.
llvm-svn: 70623
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
llvm-svn: 69299
Implement the rvalue reference overload dance for returning local objects. Returning a local object first tries to find a move constructor now.
The error message when no move constructor is defined (or is not applicable) and the copy constructor is deleted is quite ugly, though.
llvm-svn: 68902
productions (except the already broken ObjC cases like @class X,Y;) in
the parser that can produce more than one Decl return a DeclGroup instead
of a Decl, etc.
This allows elimination of the Decl::NextDeclarator field, and exposes
various clients that should look at all decls in a group, but which were
only looking at one (such as the dumper, printer, etc). These have been
fixed.
Still TODO:
1) there are some FIXME's in the code about potentially using
DeclGroup for better location info.
2) ParseObjCAtDirectives should return a DeclGroup due to @class etc.
3) I'm not sure what is going on with StmtIterator.cpp, or if it can
be radically simplified now.
4) I put a truly horrible hack in ParseTemplate.cpp.
I plan to bring up #3/4 on the mailing list, but don't plan to tackle
#1/2 in the short term.
llvm-svn: 68002
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
uniqued representation that should both save some memory and make it
far easier to properly build canonical types for types involving
dependent nested-name-specifiers, e.g., "typename T::Nested::type".
This approach will greatly simplify the representation of
CXXScopeSpec. That'll be next.
llvm-svn: 67799
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
so we can easily add access specifiers to diagnostics.
llvm-svn: 67795
class C {
C() { }
int a;
};
C::C() : a(10) { }
We also diagnose when initializers are used on declarations that aren't constructors:
t.cpp:1:10: error: only constructors take base initializers
void f() : a(10) { }
^
Doug and/or Sebastian: I'd appreciate a review, especially the nested-name-spec test results (from the looks of it we now match gcc in that test.)
llvm-svn: 67672