__getattr__ does not work well with debugging. If the attribute function has
a run-time error, a missing attribute is reported instead.
llvm-svn: 296765
Bug-Point functionality needs extending due to the patch D29185 by bd1976llvm (Allow llvm's build and test systems to support paths with spaces ). It requires Bugpoint to accept the use of spaces within ‘--compile-command’ tokens.
Details
Bugpoint uses the argument ‘--compile-command’ to pass in a command line argument as a string, the string is tokenized by the ‘lexCommand’ function using spaces as a delimiter. Patch D29185 will cause the unit test compile-custom.ll to fail as spaces are now required within tokens and as a delimiter. This patch allows the use of escape characters as below:
Two consecutive '\' evaluate to a single '\'.
A space after a '\' evaluates to a space that is not interpreted as a delimiter.
Any other instances of the '\' character are removed.
Committed on behalf of Owen Reynolds
Differential revision: https://reviews.llvm.org/D29940
llvm-svn: 296763
This re-applies r289696, which caused TSan perf regression, which has
since been addressed in separate changes (see PR for details).
See PR31382.
llvm-svn: 296759
The CallingConv.td rules allocate 8 bytes for these kinds of arguments
on AAPCS targets, but we were only recording the smaller amount. The
difference is theoretical on AArch64 because we don't actually store
more than the smaller amount, but it's still much better to have these
two components in agreement.
Based on Diana Picus's ARM equivalent patch (where it matters a lot
more).
llvm-svn: 296754
Summary:
When InstCombine is optimizing certain select-cmp-br patterns
it replaces the result of the select in uses outside of the
basic block containing the select. This is only legal if the
path from the select to the outside use is disjoint from all
other paths out from the originating basic block.
The problem found was that InstCombiner::replacedSelectWithOperand
did not consider the case when both edges out from the br pointed
to the same label. In that case the paths aren't disjoint and the
transformation is illegal. This patch avoids the faulty rewrites
by verifying that there is a single flow to the successor where
we want to replace uses.
Reviewers: llvm-commits, spatel, majnemer
Differential Revision: https://reviews.llvm.org/D30455
llvm-svn: 296752
After r296750, we're able to match interleaved accesses having types wider than
128 bits. This patch updates the associated TTI costs.
Differential Revision: https://reviews.llvm.org/D29675
llvm-svn: 296751
This patch teaches (ARM|AArch64)ISelLowering.cpp to match illegal vector types
to interleaved access intrinsics as long as the types are multiples of the
vector register width. A "wide" access will now be mapped to multiple
interleave intrinsics similar to the way in which non-interleaved accesses with
illegal types are legalized into multiple accesses. I'll update the associated
TTI costs (in getInterleavedMemoryOpCost) as a follow-on.
Differential Revision: https://reviews.llvm.org/D29466
llvm-svn: 296750
When computing the smallest and largest types for selecting the maximum
vectorization factor, we currently ignore loads and stores of pointer types if
the memory access is non-consecutive. We do this because such accesses must be
scalarized regardless of vectorization factor, and thus shouldn't be considered
when determining the factor. This patch makes this check less aggressive by
also considering non-consecutive accesses that may be vectorized, such as
interleaved accesses. Because we don't know at the time of the check if an
accesses will certainly be vectorized (this is a cost model decision given a
particular VF), we consider all accesses that can potentially be vectorized.
Differential Revision: https://reviews.llvm.org/D30305
llvm-svn: 296747
If dominator tree is not calculated or is invalidated, set corresponding
pointer in the pass state to nullptr. Such pointer value will indicate
that operations with dominator tree are not allowed. In particular, it
allows to skip verification for such pass state. The dominator tree is
not calculated if the machine dominator pass was skipped, it occures in
the case of entities with linkage available_externally.
The change fixes some test fails observed when expensive checks
are enabled.
Differential Revision: https://reviews.llvm.org/D29280
llvm-svn: 296742
Surprisingly, one of the three interference checks in LiveRegMatrix was
using the main live range instead of the apropriate subregister range
resulting in unnecessarily conservative results.
llvm-svn: 296722
Original commit message:
[ARM] Fix insert point for store rescheduling.
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation as
LastOp.
This patch fixes some cases where we would sink stores for no reason.
llvm-svn: 296718
Summary:
This can be used to optimize large multiplications after legalization.
Depends on D29565
Reviewers: mkuper, spatel, RKSimon, zvi, bkramer, aaboud, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29587
llvm-svn: 296711
Until now, we've had to use -global-isel to enable GISel. But using
that on other targets that don't support it will result in an abort, as we
can't build a full pipeline.
Additionally, we want to experiment with enabling GISel by default for
some targets: we can't just enable GISel by default, even among those
target that do have some support, because the level of support varies.
This first step adds an override for the target to explicitly define its
level of support. For AArch64, do that using
a new command-line option (I know..):
-aarch64-enable-global-isel-at-O=<N>
Where N is the opt-level below which GISel should be used.
Default that to -1, so that we still don't enable GISel anywhere.
We're not there yet!
While there, remove a couple LLVM_UNLIKELYs. Building the pipeline is
such a cold path that in practice that shouldn't matter at all.
llvm-svn: 296710
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation as
LastOp.
This patch fixes some cases where we would sink stores for no reason.
Differential Revision: https://reviews.llvm.org/D30124
llvm-svn: 296708
This code starts from the high end of the sorted vector of offsets, and
works backwards: it tries to find contiguous offsets, process them, then
pops them from the end of the vector. Most of the code agrees with this
order of processing, but one loop doesn't: it instead processes elements
from the low end of the vector (which are nodes with unrelated offsets).
Fix that loop to process the correct elements.
This has a few implications. One, we don't incorrectly return early when
processing multiple groups of offsets in the same block (which allows
rescheduling prera-ldst-insertpt.mir). Two, we pick the correct insert
point for loads, so they're correctly sorted (which affects the
scheduling of vldm-liveness.ll). I think it might also impact some of
the heuristics slightly.
Differential Revision: https://reviews.llvm.org/D30368
llvm-svn: 296701
This is part of the ongoing attempt to improve select codegen for all targets and select
canonicalization in IR (see D24480 for more background). The transform is a subset of what
is done in InstCombine's FoldOpIntoSelect().
I first noticed a regression in the x86 avx512-insert-extract.ll tests with a patch that
hopes to convert more selects to basic math ops. This appears to be a general missing DAG
transform though, so I added tests for all standard binops in rL296621
(PowerPC was chosen semi-randomly; it has scripted FileCheck support, but so do ARM and x86).
The poor output for "sel_constants_shl_constant" is tracked with:
https://bugs.llvm.org/show_bug.cgi?id=32105
Differential Revision: https://reviews.llvm.org/D30502
llvm-svn: 296699
Now that terminators can be EH pads, this code needs to iterate over the
immediate dominators of the EH pad to find a valid insertion point.
Fix for PR32107
Patch by Robert Olliff!
Differential Revision: https://reviews.llvm.org/D30511
llvm-svn: 296698
Take DW_FORM_implicit_const attribute value into account when profiling
DIEAbbrevData.
Currently if we have two similar types with implicit_const attributes and
different values we end up with only one abbrev in .debug_abbrev section.
For example consider two structures: S1 with implicit_const attribute ATTR
and value VAL1 and S2 with implicit_const ATTR and value VAL2.
The .debug_abbrev section will contain only 1 related record:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
This is incorrect as struct S2 (with VAL2) will use abbrev record with VAL1.
With this patch we will have two different abbreviations here:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
[M] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL2
// ....
llvm-svn: 296691
- We only need the information from the base class, not the additional
details in the LiveInterval class.
- Spread more `const`
- Some code cleanup
llvm-svn: 296684
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
I am planning to use this tool to find too noisy (missed) optimization
remarks. Long term it may actually be better to just have another tool that
exports the remarks into an sqlite database and perform queries like this in
SQL.
This splits out the YAML parsing from opt-viewer.py into a new Python module
optrecord.py.
This is the result of the script on the LLVM testsuite:
Total number of remarks 714433
Top 10 remarks by pass:
inline 52%
gvn 24%
licm 13%
loop-vectorize 5%
asm-printer 3%
loop-unroll 1%
regalloc 1%
inline-cost 0%
slp-vectorizer 0%
loop-delete 0%
Top 10 remarks:
gvn/LoadClobbered 20%
inline/Inlined 19%
inline/CanBeInlined 18%
inline/NoDefinition 9%
licm/LoadWithLoopInvariantAddressInvalidated 6%
licm/Hoisted 6%
asm-printer/InstructionCount 3%
inline/TooCostly 3%
gvn/LoadElim 3%
loop-vectorize/MissedDetails 2%
Beside some refactoring, I also changed optrecords not to use context to
access global data (max_hotness). Because of the separate module this would
have required splitting context into two. However it's not possible to access
the optrecord context from the SourceFileRenderer when calling back to
Remark.RelativeHotness.
llvm-svn: 296682
Summary:
This patch moves the clearUnusedBits calls into the two different initialization paths for APInt from a uint64_t. This allows the compiler to better optimize the clearing of the unused bits for the single word case. And it puts the clearing for the multi word case into the initSlowCase function to save code. In the common case of initializing with 0 this allows the clearing to be completely optimized out for the single word case.
On my local x86 build this is showing a ~45kb reduction in the size of the opt binary.
Reviewers: RKSimon, hans, majnemer, davide, MatzeB
Reviewed By: hans
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30486
llvm-svn: 296677
This patch adds a MachineSSA pass that coalesces blocks that branch
on the same condition.
Committing on behalf of Lei Huang.
Differential Revision: https://reviews.llvm.org/D28249
llvm-svn: 296670
Add check that deleted nodes do not get added to worklist. This can
occur when a node's operand is simplified to an existing node.
This fixes PR32108.
Reviewers: jyknight, hfinkel, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30506
llvm-svn: 296668
This was due to the test stream choosing an arbitrary partition
index for introducing the discontinuity rather than choosing
an index that would be correctly aligned for the type of data.
Also added an assertion into FixedStreamArray so that this will
be caught on all bots in the future, and not just the UBSan bot.
llvm-svn: 296661
Summary: With clang-cl gaining support for link-time optimization, we can now enable builds using LTO when using clang-cl and lld on Windows. To do this, we must not pass the -flto flag to the linker; lld-link does not understand it, but will perform LTO automatically when it encounters bitcode files. We also don't pass /Brepro when using LTO - the compiler doesn't generate object files for LTO, so passing the flag would only result in a warning about it being unused.
Reviewers: rnk, ruiu, hans
Reviewed By: hans
Subscribers: mgorny, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30240
llvm-svn: 296658
DWARF may define a default lower-bound for arrays in languages defined
in a particular DWARF version. But the logic to suppress an
unnecessary lower-bound attribute was looking at the hard-coded
default DWARF version, not the version that had been requested.
Also updated the list with all languages defined in DWARF v5.
Differential Revision: http://reviews.llvm.org/D30484
llvm-svn: 296652
Resubmit r295336 after the bug with non-zero offset patterns on BE targets is fixed (r296336).
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 296651
On Hexagon, values of type i1 are passed in registers of type i32,
even though i1 is not a legal value for these registers. This is a
special case and needs special handling to maintain consistency of
the lowering information.
This fixes PR32089.
llvm-svn: 296645
This re-adds all the binary stream tests. This was reverted due
to some misaligned reads. For now the offending test is
disabled while I investigate.
llvm-svn: 296643
I already created a BinaryStreamError class for this purpose,
so update the code to use that on the remaining occurrences
of errc values.
This should also address the issue which led to r296583.
llvm-svn: 296640
Lower i1, i8 and i16 call parameters by extending them before storing them on
the stack. Also make sure we encode the correct, extended size in the
corresponding memory operand, and that we compute the correct stack size in the
end.
The latter is a bit more complicated because we used to compute the stack size
in the getStackAddress method, based on the Size and Offset of the parameters.
However, if the last parameter is sign extended, we'd be using the wrong,
non-extended size, and we'd end up with a smaller stack than we need to hold the
extended value. Instead of hacking this up based on the value of Size in
getStackAddress, we move our stack size handling logic to assignArg, where we
have access to the CCState which knows everything we could possibly want to know
about the stack. This way we don't need to duplicate any knowledge or resort to
any ugly hacks.
On this same occasion, update the IRTranslator test to check the sizes of the
stores everywhere, not just for sign extended paramteres.
llvm-svn: 296631
Summary:
The SLP vectorizer should propagate IR-level optimization hints/flags
(nsw, nuw, exact, fast-math) when converting scalar horizontal
reductions instructions into vectors, just like for other vectorized
instructions.
It doe not include IR propagation for extra arguments, we need to handle
original scalar operations for extra args to propagate correct flags.
Reviewers: mkuper, mzolotukhin, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30418
llvm-svn: 296614
Summary:
We should preserve IR flags for extra args. These IR flags should be
taken from original scalar operations, not from the reduction
operations.
Reviewers: mkuper, mzolotukhin, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30447
llvm-svn: 296613
This parsing code was incorrectly checking for invalid characters, so an
invalid instruction like:
msr spsr_w, r0
would be emitted as:
msr spsr_cxsf, r0
Differential revision: https://reviews.llvm.org/D30462
llvm-svn: 296607
Summary:
If horizontal reduction tree starts from the binary operation that is
used in PHI node, but this PHI is not used in horizontal reduction, we
may end up with extra addition of this PHI node after vectorization.
Here is an example:
```
%phi = phi i32 [ %tmp, %end], ...
...
%tmp = add i32 %tmp1, %tmp2
end:
```
after vectorization we always have something like:
```
%phi = phi i32 [ %tmp, %end], ...
...
%red = extractelement <8 x 32> %vec.red, 0
%tmp = add i32 %red, %phi
end:
```
even if `%phi` is not used in reduction tree. Patch considers these PHI
nodes as extra arguments and considers them in the final result iff they
really used in reduction.
Reviewers: mkuper, hfinkel, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30409
llvm-svn: 296606
Windows does not treat `~` as a reference to home directory, so the call
to `llvm::sys::path::native` on, say, `~/somedir` produces `~\somedir`,
which has different meaning than the original path. With this change
tilde is expanded on Windows to user profile directory. Such behavior
keeps original meaning of the path and is consistent with the algorithm
of `llvm::sys::path::home_directory`.
Differential Revision: https://reviews.llvm.org/D27527
llvm-svn: 296590
Summary:
Solves PR 31990.
The bad rewrite could replace a memcpy of one word with
store i4 -1
while it should actually be
store i8 -1
Hopefully opt and llc has improved enough so the original optimization
done by the code isn't needed anymore.
One already existing testcase is affected. It originally tested that
the memcpy was replaced with
load double
but since we now remove that rewrite it will be
load i64
instead.
Patch suggestion by Eli Friedman.
Reviewers: eli.friedman, majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D30254
llvm-svn: 296585
Unfortunately, mingw's libstdc++ doesn't provide winsock2 errors.
That said, we should avoid raising OS-oriented error code in our code.
For now, I suggest to define custom error from std::error_category.
See also; https://reviews.llvm.org/D20592
llvm-svn: 296583
Unfortunately, mingw's libstdc++ doesn't provide winsock2 errors.
That said, we should avoid raising OS-oriented error code in our code.
For now, I suggest to define custom error from std::error_category.
See also; https://reviews.llvm.org/D20592
llvm-svn: 296581
The practice in LV is that we emit analysis remarks and then finally report
either a missed or applied remark on the final decision whether vectorization
is taking place. On this code path, we were closing with an analysis remark.
llvm-svn: 296578
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Id1e287f073fa4959713ba545fa4254db5da8b40d
llvm-svn: 296575
Modify the test so that it is still testing something
closer to what it was intended to originally.
I think the original intent was to test the situation where
there was a branch on execz and then unconditional branch
required relaxing.With the change in r296539,
there was no longer and execz branch.
Change the test so that there is now an execz branch inserted.
There is no longer an unconditional branch after the execz branch,
so this might need to be tricked in some other way to keep that
there.
llvm-svn: 296574
A bug was uncovered where if you have a StreamRef whose ViewOffset
is > 0, then when you call readLongestContiguousChunk it will
succeed even when it shouldn't, and it always return you a
buffer that was taken as if the ViewOffset was 0.
Fixed this bug and added a test for it.
llvm-svn: 296556
When SDAGISel (top-down) selects a tail-call, it skips the remainder
of the block.
If, before that, FastISel (bottom-up) selected some of the (no-op) next
few instructions, we can end up with dead instructions following the
terminator (selected by SDAGISel).
We need to erase them, as we know they aren't necessary (in addition to
being incorrect).
We already do this when FastISel falls back on the tail-call itself.
Also remove the FastISel-emitted code if we fallback on the
instructions between the tail-call and the return.
llvm-svn: 296552
Iterating on the use-list we're modifying doesn't work: after the first
iteration, the use-list iterator will point to a MachineOperand
referencing the new register. This caused us to skip the other uses to
replace.
Instead, use MRI.replaceRegWith(), which accounts for this behavior.
llvm-svn: 296551
Conflicting debug info for function arguments causes hard-to-debug
assertions in the DWARF backend, so the Verifier should reject it.
For performance reasons this only checks function arguments from
non-inlined debug intrinsics for now.
rdar://problem/30520286
This reapplies r295749 after fixing PR32042.
llvm-svn: 296543
This is for running the assembler with -g (to emit DWARF describing
the assembler source).
Differential Revision: http://reviews.llvm.org/D30475
llvm-svn: 296541
To facilitate this, add a new hidden command-line option to disable
the explicit-locals pass. That causes llc to emit invalid code that doesn't
have all locals converted to get_local/set_local, however it simplifies
testwriting in many cases.
llvm-svn: 296540
This prevents generating stm r1!, {r0, r1} on Thumb1, where value
stored for r1 is UNKONWN.
Patch by Zhaoshi Zheng.
Differential Revision: https://reviews.llvm.org/D27910
llvm-svn: 296538
Summary:
Currently, our post-dom tree tries to ignore and remove the effects of
infinite loops. It fails miserably at this, because it tries to do it
ahead of time, and thus can only detect self-loops, and any other type
of infinite loop, it pretends doesn't exist at all.
This can, in a bunch of cases, lead to wrong answers and a completely
empty post-dom tree.
Wrong answer:
```
declare void foo()
define internal void @f() {
entry:
br i1 undef, label %bb35, label %bb3.i
bb3.i:
call void @foo()
br label %bb3.i
bb35.loopexit3:
br label %bb35
bb35:
ret void
}
```
We get:
```
Inorder PostDominator Tree:
[1] <<exit node>> {0,7}
[2] %bb35 {1,6}
[3] %bb35.loopexit3 {2,3}
[3] %entry {4,5}
```
This is a trivial modification of the testcase for PR 6047
Note that we pretend bb3.i doesn't exist.
We also pretend that bb35 post-dominates entry.
While it's true that it does not exit in a theoretical sense, it's not
really helpful to try to ignore the effect and pretend that bb35
post-dominates entry. Worse, we pretend the infinite loop does
nothing (it's usually considered a side-effect), and doesn't even
exist, even when it calls a function. Sadly, this makes it impossible
to use when you are trying to move code safely. All compilers also
create virtual or real single exit nodes (including us), and connect
infinite loops there (which this patch does). In fact, others have
worked around our behavior here, to the point of building their own
post-dom trees:
https://zneak.github.io/fcd/2016/02/17/structuring.html and pointing
out the region infrastructure is near-useless for them with postdom in
this state :(
Completely empty post-dom tree:
```
define void @spam() #0 {
bb:
br label %bb1
bb1: ; preds = %bb1, %bb
br label %bb1
bb2: ; No predecessors!
ret void
}
```
Printing analysis 'Post-Dominator Tree Construction' for function 'foo':
=============================--------------------------------
Inorder PostDominator Tree:
[1] <<exit node>> {0,1}
:(
(note that even if you ignore the effects of infinite loops, bb2
should be present as an exit node that post-dominates nothing).
This patch changes post-dom to properly handle infinite loops and does
root finding during calculation to prevent empty tress in such cases.
We match gcc's (and the canonical theoretical) behavior for infinite
loops (find the backedge, connect it to the exit block).
Testcases coming as soon as i finish running this on a ton of random graphs :)
Reviewers: chandlerc, davide
Subscribers: bryant, llvm-commits
Differential Revision: https://reviews.llvm.org/D29705
llvm-svn: 296535
Summary:
Update the XRay docs to mention new subcomands to the llvm-xray tool,
and details on FDR mode logging. Also list down available libraries for
use part of the LLVM distribution.
Reviewers: rSerge, pelikan, echristo, timshen, sdardis, rengolin
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30395
llvm-svn: 296528
other tables. Providing a helpful error message to what the error is and
where the error occurred based on which opcode it was associated with.
There have been handful of bug fixes dealing with bad bind info in
object files, r294021 and r249845, which only put a band aid on the
problem after a bad bind table was created after unpacking from
its compact info. In these cases a bind table should have never been
created and an error should have simply been generated.
This change puts in place the plumbing to allow checking and returning
of an error when the compact info is unpacked. This follows the model
of iterators that can fail that Lang Hanes designed when fixing the problem
for bad archives r275316 (or r275361).
This change uses one of the existing test cases that now causes an
error instead of printing <<bad library ordinal>> after a bad bind table
is created. The error uses the offset into the opcode table as shown with
the macOS dyldinfo(1) tool to indicate where the error is and which
opcode and which parameter is in error.
For example the exiting test case has this lazy binding opcode table:
% dyldinfo -opcodes test/tools/llvm-objdump/Inputs/bad-ordinal.macho-x86_64
…
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000010)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
In the test case the binary only has one library so setting the library
ordinal to the value of 2 in the BIND_OPCODE_SET_DYLIB_ORDINAL_IMM
opcode at 0x0002 above is an error. This now produces this error message:
% llvm-objdump -lazy-bind bad-ordinal.macho-x86_64
…
llvm-objdump: 'bad-ordinal.macho-x86_64': truncated or malformed object (for BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB bad library ordinal: 2 (max 1) for opcode at: 0x2)
This change provides the plumbing for the error handling and one example
of an error message. Other error checks and test cases will be added in follow
on commits.
llvm-svn: 296527
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514
It's not clear to me if this is always better than
doing ds_write2_b64 This adds the constraint of
a 128-bit register input instead of a pair of
64-bit.
llvm-svn: 296512
If during scheduling we have identified that we cannot keep optimistic
occupancy increase critical register pressure limit and try scheduling
of the whole function again. In this case blocks with smaller pressure
will have a chance for better scheduling.
Differential Revision: https://reviews.llvm.org/D30442
llvm-svn: 296506
Summary: For SamplePGO, the profile may contain cross-module inline stacks. As we need to make sure the profile annotation happens when all the hot inline stacks are expanded, we need to pass this info to the module importer so that it can import proper functions if necessary. This patch implemented this feature by emitting cross-module targets as part of function entry metadata. In the module-summary phase, the metadata is used to build call edges that points to functions need to be imported.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: davidxl, llvm-commits
Differential Revision: https://reviews.llvm.org/D30053
llvm-svn: 296498
This change introduces new method to estimate register pressure in
GCNScheduler. Standard RPTracker gives huge error due to the following
reasons:
1. It does not account for live-ins or live-outs if value is not used
in the region itself. That creates a huge error in a very common case
if there are a lot of live-thu registers.
2. It does not properly count subregs.
3. It assumes a register used as an input operand can be reused as an
output. This is not always possible by itself, this is not what RA
will finally do in many cases for various reasons not limited to RA's
inability to do so, and this is not so if the value is actually a
live-thu.
In addition we can now see clear separation between live-in pressure
which we cannot change with the scheduling and tentative pressure
which we can change.
Differential Revision: https://reviews.llvm.org/D30439
llvm-svn: 296491
The LLVM backend cannot produce any debug info for an llvm::Function
without a DISubprogram attachment. When inlining a debug-info-carrying
function into a nodebug function, there is therefore no reason to keep
any debug info intrinsic calls or debug locations on the instructions.
This fixes a problem discovered in PR32042.
rdar://problem/30679307
llvm-svn: 296488
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 296486
If two subregs of the same register are defined and we need to revert
schedule changing def order, we will end up with both instructions
having def,read-undef flags because adjustLaneLiveness() will only set
this flag but will not remove it.
Fix this by removing read-undef flags before calling adjustLaneLiveness.
Differential Revision: https://reviews.llvm.org/D30428
llvm-svn: 296484
Stack Smash Protection is not completely free, so in hot code, the overhead it causes can cause performance issues. By adding diagnostic information for which functions have SSP and why, a user can quickly determine what they can do to stop SSP being applied to a specific hot function.
This change adds a remark that is reported by the stack protection code when an instruction or attribute is encountered that causes SSP to be applied.
Patch by: James Henderson
Differential Revision: https://reviews.llvm.org/D29023
llvm-svn: 296483
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296476
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 296474
Lower i32, float and double parameters that need to live on the stack. This
boils down to creating some G_GEPs starting from the stack pointer and storing
the values there. During the process we also keep track of the stack size and
use the final value in the ADJCALLSTACKDOWN/UP instructions.
We currently assert for smaller types, since they usually require extensions.
They will be handled in a separate patch.
llvm-svn: 296473
Summary:
clang adds !srcloc metadata to inline assembly in LLVM bitcode generated
for inline assembly in C. The value of this !srcloc is passed to the
diagnostics handler if the inline assembly generates a diagnostic.
clang is able to turn this cookie back to a location in the C source
file.
To test this functionality without a dependency, make llc print the
!srcloc metadata if it is present. The added test uses this mechanism
to test that the correct !srclocs are passed to the diag handler.
Reviewers: rengolin, rnk, echristo, grosbach, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30167
llvm-svn: 296465
In Thumb2, instructions which write to the PC are UNPREDICTABLE if they are in
an IT block but not the last instruction in the block.
Previously, we only diagnosed this for LDM instructions, this patch extends the
diagnostic to cover all of the relevant instructions.
Differential Revision: https://reviews.llvm.org/D30398
llvm-svn: 296459