In some cases, when simplifying with SCEV, we might consider pointer values as
just usual integer values. Thus, we might get a different type from what we
had originally in the map of simplified values, and hence we need to check
types before operating on the values.
This fixes PR28015.
llvm-svn: 271931
Summary:
Unroll factor (Count) calculations moved to a new function.
Early exits on pragma and "-unroll-count" defined factor added.
New type of unrolling "Force" introduced (previously used implicitly).
New unroll preference "AllowRemainder" introduced and set "true" by default.
(should be set to false for architectures that suffers from it).
Reviewers: hfinkel, mzolotukhin, zzheng
Differential Revision: http://reviews.llvm.org/D19553
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 271071
Condition might be simplified to a Constant, but it doesn't have to be
ConstantInt, so we should dyn_cast, instead of cast.
This fixes PR27886.
llvm-svn: 270924
Summary:
This patch turns on LoopUnrollAnalyzer by default. To mitigate compile
time regressions, I chose very conservative thresholds for now. Later we
can make them more aggressive, but it might require being smarter in
which loops we're optimizing. E.g. currently the biggest issue is that
with more agressive thresholds we unroll many cold loops, which
increases compile time for no performance benefit (performance of those
loops is improved, but it doesn't matter since they are cold).
Test results for compile time(using 4 samples to reduce noise):
```
MultiSource/Benchmarks/VersaBench/ecbdes/ecbdes 5.19%
SingleSource/Benchmarks/Polybench/medley/reg_detect/reg_detect 4.19%
MultiSource/Benchmarks/FreeBench/fourinarow/fourinarow 3.39%
MultiSource/Applications/JM/lencod/lencod 1.47%
MultiSource/Benchmarks/Fhourstones-3_1/fhourstones3_1 -6.06%
```
I didn't see any performance changes in the testsuite, but it improves
some internal tests.
Reviewers: hfinkel, chandlerc
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D20482
llvm-svn: 270478
Summary:
...loop after the last iteration.
This is really hard to do correctly. The core problem is that we need to
model liveness through the induction PHIs from iteration to iteration in
order to get the correct results, and we need to correctly de-duplicate
the common subgraphs of instructions feeding some subset of the
induction PHIs. All of this can be driven either from a side effect at
some iteration or from the loop values used after the loop finishes.
This patch implements this by storing the forward-propagating analysis
of each instruction in a cache to recall whether it was free and whether
it has become live and thus counted toward the total unroll cost. Then,
at each sink for a value in the loop, we recursively walk back through
every value that feeds the sink, including looping back through the
iterations as needed, until we have marked the entire input graph as
live. Because we cache this, we never visit instructions more than twice
-- once when we analyze them and put them into the cache, and once when
we count their cost towards the unrolled loop. Also, because the cache
is only two bits and because we are dealing with relatively small
iteration counts, we can store all of this very densely in memory to
avoid this from becoming an excessively slow analysis.
The code here is still pretty gross. I would appreciate suggestions
about better ways to factor or split this up, I've stared too long at
the algorithmic side to really have a good sense of what the design
should probably look at.
Also, it might seem like we should do all of this bottom-up, but I think
that is a red herring. Specifically, the simplification power is *much*
greater working top-down. We can forward propagate very effectively,
even across strange and interesting recurrances around the backedge.
Because we use data to propagate, this doesn't cause a state space
explosion. Doing this level of constant folding, etc, would be very
expensive to do bottom-up because it wouldn't be until the last moment
that you could collapse everything. The current solution is essentially
a top-down simplification with a bottom-up cost accounting which seems
to get the best of both worlds. It makes the simplification incremental
and powerful while leaving everything dead until we *know* it is needed.
Finally, a core property of this approach is its *monotonicity*. At all
times, the current UnrolledCost is a conservatively low estimate. This
ensures that we will never early-exit from the analysis due to exceeding
a threshold when if we had continued, the cost would have gone back
below the threshold. These kinds of bugs can cause incredibly hard to
track down random changes to behavior.
We could use a techinque similar (but much simpler) within the inliner
as well to avoid considering speculated code in the inline cost.
Reviewers: chandlerc
Subscribers: sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11758
llvm-svn: 269388
Summary:
Currently we consider such instructions as simplified, which is incorrect,
because if their user isn't simplified, we can't actually simplify them too.
This biases our estimates of profitability: for instance the analyzer expects
much more gains from unrolling memcpy loops than there actually are.
Reviewers: hfinkel, chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17365
llvm-svn: 269387
Before r268509, Clang would disable the loop unroll pass when optimizing
for size. That commit enabled it to be able to support unroll pragmas
in -Os builds. However, this regressed binary size in one of Chromium's
DLLs with ~100 KB.
This restores the original behaviour of no unrolling at -Os, but doing it
in LLVM instead of Clang makes more sense, and also allows the pragmas to
keep working.
Differential revision: http://reviews.llvm.org/D20115
llvm-svn: 269124
The unroll pass was disabled by clang in /Os. Those new test cases shows that the pass will behave correctly even if it is not fully disabled. This patch is related in some way to the clang commit (http://reviews.llvm.org/D19827), which re-enables the pass in /Os.
Differential Revision: http://reviews.llvm.org/D19870
llvm-svn: 268524
We were overly cautious in our analysis of loops which have invokes
which unwind to EH pads. The loop unroll transform is safe because it
only clones blocks in the loop body, it does not try to split critical
edges involving EH pads. Instead, move the necessary safety check to
LoopUnswitch.
N.B. The safety check for loop unswitch is covered by an existing test
which fails without it.
llvm-svn: 268357
Summary:
It is incorrect to compare TripCount (which is BECount + 1)
with extraiters (or Count) to check if we should enter unrolled
loop or not, because TripCount can potentially overflow
(when BECount is max unsigned integer).
While comparing BECount with (Count - 1) is overflow safe and
therefore correct.
Reviewer: hfinkel
Differential Revision: http://reviews.llvm.org/D19256
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 267662
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Updating dominators for exit-blocks of the unrolled loops is not enough,
as shown in PR27157. The proper way is to update dominators for all
dominance-children of original loop blocks.
llvm-svn: 265605
Summary:
Specifically, when we perform runtime loop unrolling of a loop that
contains a convergent op, we can only unroll k times, where k divides
the loop trip multiple.
Without this change, we'll happily unroll e.g. the following loop
for (int i = 0; i < N; ++i) {
if (i == 0) convergent_op();
foo();
}
into
int i = 0;
if (N % 2 == 1) {
convergent_op();
foo();
++i;
}
for (; i < N - 1; i += 2) {
if (i == 0) convergent_op();
foo();
foo();
}.
This is unsafe, because we've just added a control-flow dependency to
the convergent op in the prelude.
In general, runtime unrolling loops that contain convergent ops is safe
only if we don't have emit a prelude, which occurs when the unroll count
divides the trip multiple.
Reviewers: resistor
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17526
llvm-svn: 263509
Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust.
Reviewers: chandlerc, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17904
llvm-svn: 263318
The issue was that we only required LCSSA rebuilding if the immediate
parent-loop had values used outside of it. The fix is to enaable the
same logic for all outer loops, not only immediate parent.
llvm-svn: 261575
Summary:
Extending findExistingExpansion can use existing value in ExprValueMap.
This patch gives 0.3~0.5% performance improvements on
benchmarks(test-suite, spec2000, spec2006, commercial benchmark)
Reviewers: mzolotukhin, sanjoy, zzheng
Differential Revision: http://reviews.llvm.org/D15559
llvm-svn: 260938
Currently we're unrolling loops more in minsize than in optsize, which
means -Oz will have a larger code size than -Os. That doesn't make any
sense.
This resolves the FIXME about this in LoopUnrollPass and extends the
optsize test to make sure we use the smaller threshold for minsize as
well.
llvm-svn: 257402
It's strange that LoopInfo mostly owns the Loop objects, but that it
defers deleting them to the loop pass manager. Instead, change the
oddly named "updateUnloop" to "markAsRemoved" and have it queue the
Loop object for deletion. We can't delete the Loop immediately when we
remove it, since we need its pointer identity still, so we'll mark the
object as "invalid" so that clients can see what's going on.
llvm-svn: 257191
noduplicate prevents unrolling of small loops that happen to have
barriers in them. If a loop has a barrier in it, it is OK to duplicate
it for the unroll.
llvm-svn: 256075
Summary:
Currently we always recompute LCSSA for outer loops after unrolling an
inner loop. That leads to compile time problem when we have big loop
nests, and we can solve it by avoiding unnecessary work. For instance,
if w eonly do partial unrolling, we don't break LCSSA, so we don't need
to rebuild it. Also, if all exits from the inner loop are inside the
enclosing loop, then complete unrolling won't break LCSSA either.
I replaced unconditional LCSSA recomputation with conditional recomputation +
unconditional assert and added several tests, which were failing when I
experimented with it.
Soon I plan to follow up with a similar patch for recalculation of dominators
tree.
Reviewers: hfinkel, dexonsmith, bogner, joker.eph, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14526
llvm-svn: 253126
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
Commit 251839 triggers miscompiles on some bots:
http://lab.llvm.org:8011/builders/perf-x86_64-penryn-O3-polly-fast/builds/13723
(The commit is listed in 13722, but due to an existing failure introduced in
13721 and reverted in 13723 the failure is only visible in 13723)
To verify r251839 is indeed the only change that triggered the buildbot failures
and to ensure the buildbots remain green while investigating I temporarily
revert this commit. At the current state it is unclear if this commit introduced
some miscompile or if it only exposed code to Polly that is subsequently
miscompiled by Polly.
llvm-svn: 251901
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251839
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251492
Apart from checking that GlobalVariable is a constant, we should check
that it's not a weak constant, in which case we can't propagate its
value.
llvm-svn: 248327
We only checked that a global is initialized with constants, which is
incorrect. We should be checking that GlobalVariable *is* a constant,
not just initialized with it.
llvm-svn: 247769
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
This change adds the unroll metadata "llvm.loop.unroll.enable" which directs
the optimizer to unroll a loop fully if the trip count is known at compile time, and
unroll partially if the trip count is not known at compile time. This differs from
"llvm.loop.unroll.full" which explicitly does not unroll a loop if the trip count is not
known at compile time.
The "llvm.loop.unroll.enable" is intended to be added for loops annotated with
"#pragma unroll".
llvm-svn: 244466
through PHI nodes across iterations.
This patch teaches the new advanced loop unrolling heuristics to propagate
constants into the loop from the preheader and around the backedge after
simulating each iteration. This lets us brute force solve simple recurrances
that aren't modeled effectively by SCEV. It also makes it more clear why we
need to process the loop in-order rather than bottom-up which might otherwise
make much more sense (for example, for DCE).
This came out of an attempt I'm making to develop a principled way to account
for dead code in the unroll estimation. When I implemented
a forward-propagating version of that it produced incorrect results due to
failing to propagate *cost* between loop iterations through the PHI nodes, and
it occured to me we really should at least propagate simplifications across
those edges, and it is quite easy thanks to the loop being in canonical and
LCSSA form.
Differential Revision: http://reviews.llvm.org/D11706
llvm-svn: 243900
r243250 appeared to break clang/test/Analysis/dead-store.c on one of the build
slaves, but I couldn't reproduce this failure locally. Probably a false
positive as I saw this test was broken by r243246 or r243247 too but passed
later without people fixing anything.
llvm-svn: 243253
Summary:
This patch updates TargetTransformInfoImplCRTPBase::getGEPCost to consider
addressing modes. It now returns TCC_Free when the GEP can be completely folded
to an addresing mode.
I started this patch as I refactored SLSR. Function isGEPFoldable looks common
and is indeed used by some WIP of mine. So I extracted that logic to getGEPCost.
Furthermore, I noticed getGEPCost wasn't directly tested anywhere. The best
testing bed seems CostModel, but its getInstructionCost method invokes
getAddressComputationCost for GEPs which provides very coarse estimation. So
this patch also makes getInstructionCost call the updated getGEPCost for GEPs.
This change inevitably breaks some tests because the cost model changes, but
nothing looks seriously wrong -- if we believe the new cost model is the right
way to go, these tests should be updated.
This patch is not perfect yet -- the comments in some tests need to be updated.
I want to know whether this is a right approach before fixing those details.
Reviewers: chandlerc, hfinkel
Subscribers: aschwaighofer, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D9819
llvm-svn: 243250
Summary:
Resolving a branch allows us to ignore blocks that won't be executed, and thus make our estimate more accurate.
This patch is intended to be applied after D10205 (though it could be applied independently).
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10206
llvm-svn: 243084
During estimation of unrolling effect we should be able to propagate
constants through casts.
Differential Revision: http://reviews.llvm.org/D10207
llvm-svn: 242257
Enable runtime unrolling for loops with unroll count metadata ("#pragma unroll N")
and a runtime trip count. Also, do not unroll loops with unroll full metadata if the
loop has a runtime loop count. Previously, such loops would be unrolled with a
very large threshold (pragma-unroll-threshold) if runtime unrolled happened to be
enabled resulting in a very large (and likely unwise) unroll factor.
llvm-svn: 242047
We would create a phi node with a zero initialized operand instead of
undef in the case where no value was originally available. This was
problematic for x86_mmx which has no null value.
llvm-svn: 241143
This improves debug locations in passes that do a lot of basic block
transformations. Important case is LoopUnroll pass, the test for correct
debug locations accompanies this change.
Test Plan: regression test suite
Reviewers: dblaikie, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10367
llvm-svn: 239551
Summary:
canUnrollCompletely takes `unsigned` values for `UnrolledCost` and
`RolledDynamicCost` but is passed in `uint64_t`s that are silently
truncated. Because of this, when `UnrolledSize` is a large integer
that has a small remainder with UINT32_MAX, LLVM tries to completely
unroll loops with high trip counts.
Reviewers: mzolotukhin, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10293
llvm-svn: 239218
The new naming is (to me) much easier to understand. Here is a summary
of the new state of the world:
- '*Threshold' is the threshold for full unrolling. It is measured
against the estimated unrolled cost as computed by getUserCost in TTI
(or CodeMetrics, etc). We will exceed this threshold when unrolling
loops where unrolling exposes a significant degree of simplification
of the logic within the loop.
- '*PercentDynamicCostSavedThreshold' is the percentage of the loop's
estimated dynamic execution cost which needs to be saved by unrolling
to apply a discount to the estimated unrolled cost.
- '*DynamicCostSavingsDiscount' is the discount applied to the estimated
unrolling cost when the dynamic savings are expected to be high.
When actually analyzing the loop, we now produce both an estimated
unrolled cost, and an estimated rolled cost. The rolled cost is notably
a dynamic estimate based on our analysis of the expected execution of
each iteration.
While we're still working to build up the infrastructure for making
these estimates, to me it is much more clear *how* to make them better
when they have reasonably descriptive names. For example, we may want to
apply estimated (from heuristics or profiles) dynamic execution weights
to the *dynamic* cost estimates. If we start doing that, we would also
need to track the static unrolled cost and the dynamic unrolled cost, as
only the latter could reasonably be weighted by profile information.
This patch is sadly not without functionality change for the new unroll
analysis logic. Buried in the heuristic management were several things
that surprised me. For example, we never subtracted the optimized
instruction count off when comparing against the unroll heursistics!
I don't know if this just got lost somewhere along the way or what, but
with the new accounting of things, this is much easier to keep track of
and we use the post-simplification cost estimate to compare to the
thresholds, and use the dynamic cost reduction ratio to select whether
we can exceed the baseline threshold.
The old values of these flags also don't necessarily make sense. My
impression is that none of these thresholds or discounts have been tuned
yet, and so they're just arbitrary placehold numbers. As such, I've not
bothered to adjust for the fact that this is now a discount and not
a tow-tier threshold model. We need to tune all these values once the
logic is ready to be enabled.
Differential Revision: http://reviews.llvm.org/D9966
llvm-svn: 239164
On X86 (and similar OOO cores) unrolling is very limited, and even if the
runtime unrolling is otherwise profitable, the expense of a division to compute
the trip count could greatly outweigh the benefits. On the A2, we unroll a lot,
and the benefits of unrolling are more significant (seeing a 5x or 6x speedup
is not uncommon), so we're more able to tolerate the expense, on average, of a
division to compute the trip count.
llvm-svn: 237947
This is to cleanup some redundency generated by LoopUnroll pass. Such redundency may not be cleaned up by existing passes after LoopUnroll.
Differential Revision: http://reviews.llvm.org/D9777
llvm-svn: 237395
Summary:
This patch reimplements heuristic that tries to estimate optimization beneftis
from complete loop unrolling.
In this patch I kept the minimal changes - e.g. I removed code handling
branches and folding compares. That's a promising area, but now there
are too many questions to discuss before we can enable it.
Test Plan: Tests are included in the patch.
Reviewers: hfinkel, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8816
llvm-svn: 237156
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
llvm-svn: 234846
Clean up a predicate I added in r229731, fix the relevant comment and
add a test case. The earlier version is confusing to read and was also
buggy (probably not a coincidence) till Alexey fixed it in r233881.
llvm-svn: 234701
It's firstly committed at r231630, and reverted at r231635.
Function pass InstructionSimplifier is inserted as barrier to
make sure loop unroll pass won't affect on LICM pass.
llvm-svn: 232011
For inner one of nested loops, it is more likely to be a hot loop,
and the runtime check can be promoted out from patch 0001, so the
overhead is less, we can try a doubled threshold to unroll more loops.
llvm-svn: 231632
Runtime unrolling is an expensive optimization which can bring benefit
only if the loop is hot and iteration number is relatively large enough.
For some loops, we know they are not worth to be runtime unrolled.
The scalar loop from vectorization is one of the cases.
llvm-svn: 231631
Runtime unrollng will introduce a runtime check in loop prologue.
If the unrolled loop is a inner loop, then the proglogue will be inside
the outer loop. LICM pass can help to promote the runtime check out if
the checked value is loop invariant.
llvm-svn: 231630
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows. This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.
Differential Revision: http://reviews.llvm.org/D7715
llvm-svn: 229731
The issues with the new unroll analyzer are more fundamental than code
cleanup, algorithm, or data structure changes. I've sent an email to the
original commit thread with details and a proposal for how to redesign
things. I'm disabling this for now so that we don't spend time
debugging issues with it in its current state.
llvm-svn: 229064
Now that the way that the partial unrolling threshold for small loops is used
to compute the unrolling factor as been corrected, a slightly smaller threshold
is preferable. This is expected; other targets may need to re-tune as well.
llvm-svn: 225566
When we compute the size of a loop, we include the branch on the backedge and
the comparison feeding the conditional branch. Under normal circumstances,
these don't get replicated with the rest of the loop body when we unroll. This
led to the somewhat surprising behavior that really small loops would not get
unrolled enough -- they could be unrolled more and the resulting loop would be
below the threshold, because we were assuming they'd take
(LoopSize * UnrollingFactor) instructions after unrolling, instead of
(((LoopSize-2) * UnrollingFactor)+2) instructions. This fixes that computation.
llvm-svn: 225565
The P7 benefits from not have really-small loops so that we either have
multiple dispatch groups in the loop and/or the ability to form more-full
dispatch groups during scheduling. Setting the partial unrolling threshold to
44 seems good, empirically, for the P7. Compared to using no late partial
unrolling, this yields the following test-suite speedups:
SingleSource/Benchmarks/Adobe-C++/simple_types_constant_folding
-66.3253% +/- 24.1975%
SingleSource/Benchmarks/Misc-C++/oopack_v1p8
-44.0169% +/- 29.4881%
SingleSource/Benchmarks/Misc/pi
-27.8351% +/- 12.2712%
SingleSource/Benchmarks/Stanford/Bubblesort
-30.9898% +/- 22.4647%
I've speculatively added a similar setting for the P8. Also, I've noticed that
the unroller does not quite calculate the unrolling factor correctly for really
tiny loops because it neglects to account for the fact that not every loop body
replicant contains an ending branch and counter increment. I'll fix that later.
llvm-svn: 225522
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode). This adds the `distinct` keyword to assembly.
Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:
- self-references, which are never uniqued, and
- nodes whose operands are replaced that hit a uniquing collision.
The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.
Part of PR22111.
llvm-svn: 225474
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
Currently LoopUnroll generates a prologue loop before the main loop
body to execute first N%UnrollFactor iterations. Also, this loop is
used if trip-count can overflow - it's determined by a runtime check.
However, we've been mistakenly optimizing this loop to a linear code for
UnrollFactor = 2, not taking into account that it also serves as a safe
version of the loop if its trip-count overflows.
llvm-svn: 222451
In a case where we have a no {un,}signed wrap flag on the increment, if
RHS - Start is constant then we can avoid inserting a max operation bewteen
the two, since we can statically determine which is greater.
This allows us to unroll loops such as:
void testcase3(int v) {
for (int i=v; i<=v+1; ++i)
f(i);
}
llvm-svn: 220960
ScalarEvolution in the presence of multiple exits. Previously all
loops exits had to have identical counts for a loop trip count to be
considered computable. This pessimization was implemented by calling
getBackedgeTakenCount(L) rather than getExitCount(L, ExitingBlock)
inside of ScalarEvolution::getSmallConstantTripCount() (see the FIXME
in the comments of that function). The pessimization was added to fix
a corner case involving undefined behavior (pr/16130). This patch more
precisely handles the undefined behavior case allowing the pessimization
to be removed.
ControlsExit replaces IsSubExpr to more precisely track the case where
undefined behavior is expected to occur. Because undefined behavior is
tracked more precisely we can remove MustExit from ExitLimit. MustExit
was used to track the case where the limit was computed potentially
assuming undefined behavior even if undefined behavior didn't necessarily
occur.
llvm-svn: 219517
`LoopUnrollPass` says that it preserves `LoopInfo` -- make it so. In
particular, tell `LoopInfo` about copies of inner loops when unrolling
the outer loop.
Conservatively, also tell `ScalarEvolution` to forget about the original
versions of these loops, since their inputs may have changed.
Fixes PR20987.
llvm-svn: 219241
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
if (extraiters == loopfactor) jump L1
if (extraiters == loopfactor-1) jump L2
...
L1: LoopBody;
L2: LoopBody;
...
if tripcount < loopfactor jump End
Loop:
...
End:
It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
else jump Prol
Prol: LoopBody;
extraiters -= 1 // Omitted if unroll factor is 2.
if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
if (tripcount < loopfactor) jump End
Loop:
...
End:
Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.
llvm-svn: 218604
The annotation instructions are dropped during codegen and have no
impact on size. In some cases, the annotations were preventing the
unroller from unrolling a loop because the annotation calls were
pushing the cost over the unrolling threshold.
Differential Revision: http://reviews.llvm.org/D5335
llvm-svn: 218525
This adds a set of utility functions for collecting 'ephemeral' values. These
are LLVM IR values that are used only by @llvm.assume intrinsics (directly or
indirectly), and thus will be removed prior to code generation, implying that
they should be considered free for certain purposes (like inlining). The
inliner's cost analysis, and a few other passes, have been updated to account
for ephemeral values using the provided functionality.
This functionality is important for the usability of @llvm.assume, because it
limits the "non-local" side-effects of adding llvm.assume on inlining, loop
unrolling, etc. (these are hints, and do not generate code, so they should not
directly contribute to estimates of execution cost).
llvm-svn: 217335
hint) the loop unroller replaces the llvm.loop.unroll.count metadata with
llvm.loop.unroll.disable metadata to prevent any subsequent unrolling
passes from unrolling more than the hint indicates. This patch fixes
an issue where loop unrolling could be disabled for other loops as well which
share the same llvm.loop metadata.
llvm-svn: 213900
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211710
[This is resubmitting r210721, which was reverted due to suspected breakage
which turned out to be unrelated].
Some extra review comments were addressed. See D4090 and D4147 for more details.
The Clang change that produces this metadata was committed in r210667
Patch by Mark Heffernan.
llvm-svn: 211076
See http://reviews.llvm.org/D4090 for more details.
The Clang change that produces this metadata was committed in r210667
Patch by Mark Heffernan.
llvm-svn: 210721
During loop-unroll, loop exits from the current loop may end up in in different
outer loop. This requires to re-form LCSSA recursively for one level down from
the outer most loop where loop exits are landed during unroll. This fixes PR18861.
Differential Revision: http://reviews.llvm.org/D2976
llvm-svn: 209796
The old method used by X86TTI to determine partial-unrolling thresholds was
messy (because it worked by testing target features), and also would not
correctly identify the target CPU if certain target features were disabled.
After some discussions on IRC with Chandler et al., it was decided that the
processor scheduling models were the right containers for this information
(because it is often tied to special uop dispatch-buffer sizes).
This does represent a small functionality change:
- For generic x86-64 (which uses the SB model and, thus, will get some
unrolling).
- For AMD cores (because they still currently use the SB scheduling model)
- For Haswell (based on benchmarking by Louis Gerbarg, it was decided to bump
the default threshold to 50; we're working on a test case for this).
Otherwise, nothing has changed for any other targets. The logic, however, has
been moved into BasicTTI, so other targets may now also opt-in to this
functionality simply by setting LoopMicroOpBufferSize in their processor
model definitions.
llvm-svn: 208289
Otherwise we use the same threshold as for complete unrolling, which is
way too high. This made us unroll any loop smaller than 150 instructions
by 8 times, but only if someone specified -march=core2 or better,
which happens to be the default on darwin.
llvm-svn: 207940
This patch changes the vectorization remarks to also inform when
vectorization is possible but not beneficial.
Added tests to exercise some loop remarks.
llvm-svn: 207574
This provides an initial implementation of getUnrollingPreferences for x86.
getUnrollingPreferences is used by the generic (concatenation) unroller, which
is distinct from the unrolling done by the loop vectorizer. Many modern x86
cores have some kind of uop cache and loop-stream detector (LSD) used to
efficiently dispatch small loops, and taking full advantage of this requires
unrolling small loops (small here means 10s of uops).
These caches also have limits on the number of taken branches in the loop, and
so we also cap the loop unrolling factor based on the maximum "depth" of the
loop. This is currently calculated with a partial DFS traversal (partial
because it will stop early if the path length grows too much). This is still an
approximation, and one that is both conservative (because it does not account
for branches eliminated via block placement) and optimistic (because it is only
recording the maximum depth over minimum paths). Nevertheless, because the
loops that fit in these uop caches are so small, it is not clear how much the
details matter.
The original set of patches posted for review produced the following test-suite
performance results (from the TSVC benchmark) at that time:
ControlLoops-dbl - 13% speedup
ControlLoops-flt - 15% speedup
Reductions-dbl - 7.5% speedup
llvm-svn: 205348
The PowerPC A2 core greatly benefits from aggressive concatenation unrolling;
use the new getUnrollingPreferences to enable this by default when targeting
the PPC A2 core.
llvm-svn: 190549
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
Fixes rdar:14036816, PR16130.
There is an opportunity to compute precise trip counts for 'or'
expressions and multi-exit loops.
rdar:14038809: Optimize trip count computation for multi-exit loops.
To do this we need to record the fact that ExitLimit assumes NSW. When
it does not we can safely assume that the loop trip count is the
minimum ExitLimt across all subexpressions and loop exits.
llvm-svn: 183060
Summary:
Statistics are still available in Release+Asserts (any +Asserts builds),
and stats can also be turned on with LLVM_ENABLE_STATS.
Move some of the FastISel stats that were moved under DEBUG()
back out of DEBUG(), since stats are disabled across the board now.
Many tests depend on grepping "-stats" output. Move those into
a orig_dir/Stats/. so that they can be marked as unsupported
when building without statistics.
Differential Revision: http://llvm-reviews.chandlerc.com/D486
llvm-svn: 176733
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
When the trip count is -1, getSmallConstantTripMultiple could return zero,
and this would cause runtime loop unrolling to assert. Instead of returning
zero, one is now returned (consistent with the existing overflow cases).
Fixes PR14167.
llvm-svn: 166612
Take this opportunity to generalize the indirectbr bailout logic for
loop transformations. CFG transformations will never get indirectbr
right, and there's no point trying.
llvm-svn: 154386
Patch by Brendon Cahoon!
This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.
llvm-svn: 146245
The loop tree's inclusive block lists are painful and expensive to
update. (I have no idea why they're inclusive). The design was
supposed to handle this case but the implementation missed it and my
unit tests weren't thorough enough.
Fixes PR11335: loop unroll update.
llvm-svn: 144970
SCEV unrolling can unroll loops with arbitrary induction variables. It
is a prerequisite for -disable-iv-rewrite performance. It is also
easily handles loops of arbitrary structure including multiple exits
and is generally more robust.
This is under a temporary option to avoid affecting default
behavior for the next couple of weeks. It is needed so that I can
checkin unit tests for updateUnloop.
llvm-svn: 137384
These are not individual bug fixes. I had to rewrite a good chunk of
the unroller to make it sane. I think it was getting lucky on trivial
completely unrolled loops with no early exits. I included some fairly
simple unit tests for partial unrolling. I didn't do much stress
testing, so it may not be perfect, but should be usable now.
llvm-svn: 137190
unrolling threshold to the optimize-for-size threshold. Basically, for loops containing calls, unrolling
can still be profitable as long as the loop is REALLY small.
llvm-svn: 113439
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
in the presence of out-of-loop users of in-loop values and the trip
count is not a known multiple of the unroll count, and to be a bit
simpler overall. This fixes PR2253.
llvm-svn: 52645