This tries to force the result type to vXi32 followed by a truncate. This can help avoid scalarization that would otherwise occur.
There's some annoying examples of an avx512 truncate instruction followed by a packus where we should really be able to just use one truncate. But overall this is still a net improvement.
llvm-svn: 347105
In one case probably you have be using it, in the other it
looks like it was redundant.
Differential Revision: https://reviews.llvm.org/D54644
llvm-svn: 347098
We need to control exponential behavior of loop-unswitch so we do not get
run-away compilation.
Suggested solution is to introduce a multiplier for an unswitch cost that
makes cost prohibitive as soon as there are too many candidates and too
many sibling loops (meaning we have already started duplicating loops
by unswitching).
It does solve the currently known problem with compile-time degradation
(PR 39544).
Tests are built on top of a recently implemented CHECK-COUNT-<num>
FileCheck directives.
Reviewed By: chandlerc, mkazantsev
Differential Revision: https://reviews.llvm.org/D54223
llvm-svn: 347097
This NFC patch just adds test cases for conversions that currently
require scalarization of vectors. An updcoming patch will change
the legalization for these and it is more suitable on the review
to show the diferences in code gen rather than just the new code gen.
llvm-svn: 347090
When unwinding past a function that uses shadow call stack, we must
subtract 8 from the value of the x18 register. This patch causes us
to emit a call frame instruction that causes that to happen.
Differential Revision: https://reviews.llvm.org/D54609
llvm-svn: 347089
Summary:
Experience has shown that the functionality is useful. It makes linking
optimized clang with debug info for me a lot faster, 20s to 13s. The
type merging phase of PDB writing goes from 10s to 3s.
This removes the LLVM cl::opt and replaces it with a metadata flag.
After this change, users can do the following to use ghash:
- add -gcodeview-ghash to compiler flags
- replace /DEBUG with /DEBUG:GHASH in linker flags
Reviewers: zturner, hans, thakis, takuto.ikuta
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D54370
llvm-svn: 347072
Summary:
StructRet attribute is not allowed in vararg calls. The statepoint
intrinsic is vararg, but the wrapped function may be not. Allow
calls of statepoint with StructRet arg, as long as the wrapped
function is not vararg.
Reviewers: thanm, anna
Reviewed By: anna
Subscribers: anna, llvm-commits
Differential Revision: https://reviews.llvm.org/D53602
llvm-svn: 347050
Summary:
As discussed in previous review, and noted in the FIXME, if `X` is actually an `lshr Y, Z` (logical!),
we can fold the `Z` into 'control`, and let the `BEXTR` do this too.
We could just insert those 8 bits of shift amount into control,
but it is better to instead zero-extend them, and 'or' them in place.
We can only do this for `lshr`, not `ashr`, because we do not know that the mask cover only the bits of `Y`,
and not any of the sign-extended bits.
The obvious question is, is this actually legal to do?
I believe it is. Relevant quotes, from `Intel® 64 and IA-32 Architectures Software Developer’s Manual`, `BEXTR — Bit Field Extract`:
* `Bit 7:0 of the second source operand specifies the starting bit position of bit extraction.`
* `A START value exceeding the operand size will not extract any bits from the second source operand.`
* `Only bit positions up to (OperandSize -1) of the first source operand are extracted.`
* `All higher order bits in the destination operand (starting at bit position LENGTH) are zeroed.`
* `The destination register is cleared if no bits are extracted.`
FIXME: if we can do this, i wonder if we should prefer `BEXTR` over `BZHI` in such cases.
Reviewers: RKSimon, craig.topper, spatel, andreadb
Reviewed By: RKSimon, craig.topper, andreadb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54095
llvm-svn: 347048
This commit introduces support for materialising 64-bit constants for RV64I,
making use of the RISCVMatInt::generateInstSeq helper in order to share logic
for immediate materialisation with the MC layer (where it's used for the li
pseudoinstruction).
test/CodeGen/RISCV/imm.ll is updated to test RV64, and gains new 64-bit
constant tests. It would be preferable if anyext constant returns were sign
rather than zero extended (see PR39092). This patch simply adds an explicit
signext to the returns in imm.ll.
Further optimisations for constant materialisation are possible, most notably
for mask-like values which can be generated my loading -1 and shifting right.
A future patch will standardise on the C++ codepath for immediate selection on
RV32 as well as RV64, and then add further such optimisations to
RISCVMatInt::generateInstSeq in order to benefit both RV32 and RV64 for
codegen and li expansion.
Differential Revision: https://reviews.llvm.org/D52962
llvm-svn: 347042
Introduces support for '.refsym' assembler directive.
From GCC docs (for MSP430):
'.refsym' - This directive instructs assembler to add an undefined reference
to the symbol following the directive. No relocation is created for this symbol;
it will exist purely for pulling in object files from archives.
Patch by Kristina Bessonova!
Differential Revision: https://reviews.llvm.org/D54618
llvm-svn: 347041
An attempt to recommit r346584 after failure on OSX build bot.
Fixed cache key computation in ThinLTOCodeGenerator and added
test case
llvm-svn: 347033
By early promoting the multiply to use an i16 element type we can avoid op legalization emit a second multiply for the 8 upper elements of the v16i8 type we would otherwise get.
llvm-svn: 347032
If a block had one of the _term instructions used for gluing
exec modifying instructions to the end of the block,
analyzeBranch would fail, preventing the verifier from catching
a broken successor list.
llvm-svn: 347027
We aren't going to use the upper bits of the multiply result that the extend would effect. So we don't need a specific type of extend.
This makes some reduction test cases shorter because we were previously trying to sign_extend a truncate which we can't eliminate.
llvm-svn: 347011
Add a pass to fixup various vector ISel issues.
Currently we handle converting GLOBAL_{LOAD|STORE}_*
and GLOBAL_Atomic_* instructions into their _SADDR variants.
This involves feeding the sreg into the saddr field of the new instruction.
llvm-svn: 347008
Summary:
`throw` instruction is a terminator in wasm, but BBs were not splitted
after `throw` instructions, causing machine instruction verifier to
fail.
This patch
- Splits BBs after `throw` instructions in WasmEHPrepare and adding an
unreachable instruction after `throw`, which will be deleted in
LateEHPrepare pass
- Refactors WasmEHPrepare into two member functions
- Changes the semantics of `eraseBBsAndChildren` in LateEHPrepare pass
to match that of WasmEHPrepare pass, which is newly added. Now
`eraseBBsAndChildren` does not delete BBs with remaining predecessors.
- Fixes style nits, making static function names conform to clang-tidy
- Re-enables the test temporarily disabled by rL346840 && rL346845
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54571
llvm-svn: 347003
In reduceVMULWidth, we no longer need to worry about extending the vector to 128 bits first. Regular widening of extends, muls and shuffles will take care of that for us.
In combineMulToPMADDWD, we can handle v2i32 multiplies and allow the VPMADDWD to be widened to v4i32 during type legalization by adding custom widening like we do have for AVG/ADDUS/SUBUS. I had to modify that code a little to allow different and output VTs.
Differential Revision: https://reviews.llvm.org/D54512
llvm-svn: 346980
We were adding the entire scalarization extraction cost for reductions, which returns the total cost of extracting every element of a vector type.
For reductions we don't need to do this - we just need to extract the 0'th element after the reduction pattern has completed.
Fixes PR37731
Differential Revision: https://reviews.llvm.org/D54585
llvm-svn: 346970
There's a potential miscompile here. It's unlikely in the real
world because this transform is guarded with shouldChangeType(),
but this test file doesn't include a standard data-layout for
some reason (despite including a custom 1), so we can see the bug.
llvm-svn: 346966
This fixes -filetype=null support when compiling for a Win32 target and the module has a CodeView flag.
The only places changed are the uses of getTargetStreamer function - this patch guards both of them with null checks.
Committed on behalf of @eush (Eugene Sharygin)
Differential Revision: https://reviews.llvm.org/D54008
llvm-svn: 346962
This is a problem seen in common rotate idioms as noted in:
https://bugs.llvm.org/show_bug.cgi?id=34924
Note that we are not canonicalizing standard IR (shifts and logic) to the intrinsics yet.
(Although I've written this before...) I think this is the last step before we enable
that transform. Ie, we could regress code by doing that transform without this
simplification in place.
In PR34924, I questioned whether this is a valid transform for target-independent IR,
but I convinced myself this is ok. If we're speculating a funnel shift by turning cmp+br
into select, then SimplifyCFG has already determined that the transform is justified.
It's possible that SimplifyCFG is not taking into account profile or other metadata,
but if that's true, then it's a bug independent of funnel shifts.
Also, we do have CGP code to restore a guard like this around an intrinsic if it can't
be lowered cheaply. But that isn't necessary for funnel shift because the default
expansion in SelectionDAGBuilder includes this same cmp+select.
Differential Revision: https://reviews.llvm.org/D54552
llvm-svn: 346960
Mark the FREM SelectionDAG node as Expand, which is necessary in order to
support the frem IR instruction on RISC-V. This is expanded into a library
call. Adds the corresponding test. Previously, this would have triggered an
assertion at instruction selection time.
Differential Revision: https://reviews.llvm.org/D54159
Patch by Luís Marques.
llvm-svn: 346958
Reapply r346374 with the fixes for modules build.
Original summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Patch by Michael Skvortsov!
llvm-svn: 346948
Logic to load 32-bit and 64-bit immediates is currently present in
RISCVAsmParser::emitLoadImm in order to support the li pseudoinstruction. With
the introduction of RV64 codegen, there is a greater benefit of sharing
immediate materialisation logic between the MC layer and codegen. The
generateInstSeq helper allows this by producing a vector of simple structs
representing the chosen instructions. This can then be consumed in the MC
layer to produce MCInsts or at instruction selection time to produce
appropriate SelectionDAG node. Sharing this logic means that both the li
pseudoinstruction and codegen can benefit from future optimisations, and
that this logic can be used for materialising constants during RV64 codegen.
This patch does contain a behaviour change: addi will now be produced on RV64
when no lui is necessary to materialise the constant. In that case addiw takes
x0 as the source register, so is semantically identical to addi.
Differential Revision: https://reviews.llvm.org/D52961
llvm-svn: 346937
This avoids some nasty shuffles when we have avx512. It will also prevent using zmm truncate instructions when a ymm instruction that zeroes part of an xmm register will do. Also avoid using avx512 truncate instructions when the input is 128 bits or less. These instructions are 2 uops on skx so we can probably find a better single uop shuffle like pshufb.
llvm-svn: 346936