X != X * C is true if:
* C is not 0 or 1
* X is not 0
* mul is nsw or nuw
Proof: https://alive2.llvm.org/ce/z/uwF29z
This is motivated by one of the cases in D98422.
The pseudo was using SSrc_b64, so it allowed folding immediates into
the destination operand for a tail call to null. However, this is not
a valid operand for the s_setpc_b64 this will be lowered to. Avoids
printing the operand as an invalid immediate.
Avoids a regression when tail calls are enabled in GlobalISel (somehow
tail calls to null get deleted in the DAG).
mlir/lib/Dialect/Shape/IR/Shape.cpp:573:26: warning: loop variable 'shape' is always a copy because the range of type '::mlir::Operation::operand_range' (aka 'mlir::OperandRange') does not return a reference [-Wrange-loop-analysis]
for (const auto &shape : shapes()) {
^
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
There seems to be an impedance mismatch between what the type
system considers an aggregate (structs and arrays) and what
constants consider an aggregate (structs, arrays and vectors).
Adjust the type check to consider vectors as well. The previous
version of the patch dropped the type check entirely, but it
turns out that getAggregateElement() does require the constant
to be an aggregate in some edge cases: For Poison/Undef the
getNumElements() API is called, without checking in advance that
we're dealing with an aggregate. Possibly the implementation should
avoid doing that, but for now I'm adding an assert so the next
person doesn't fall into this trap.
As commented by @craig.topper on rG1ba5c550d418, we can't guarantee that we'll be extending zero bits, just sign bit. So, revert to the old code for zero_extend_vector_inreg cases.
This adds an extra pattern for inserting an f16 into a odd vector lane
via an VINS. If the dual-insert-lane pattern does not happen to apply,
this can help with some simple cases.
Differential Revision: https://reviews.llvm.org/D95471
The reason for generating mv a0, a0 instruction is when the stack object offset is large then int<12>. To deal this situation, in the elimintateFrameIndex function, it will
create a virtual register, which needs the register scavenger to scavenge it. If the machine instruction that contains the stack object and the opcode is ADDI(the addi
was generated by frameindexNode), and then this instruction's destination register was the same as the register that was generated by the register scavenger, then the
mv a0, a0 was generated. So to eliminnate this instruction, in the eliminateFrameIndex function, if the instrution opcode is ADDI, then the virtual register can't be created.
Differential Revision: https://reviews.llvm.org/D92479
The target shuffle code handles vector sources, but X86ISD::VBROADCAST can also accept a scalar source for splatting.
Suggested by @craig.topper on PR49658
With this change, for `#include <ar.h>`, `clang --target=aarch64-linux-gnu`
will read `/usr/lib/gcc/aarch64-linux-gnu/10/../../../../aarch64-linux-gnu/include/ar.h`
(on Debian gcc->gcc-cross)
instead of `/usr/include/ar.h`. Some glibc headers (e.g. gnu/stubs.h) are different across architectures.
Seem unnecessary to diverge from GCC here.
Beside, lib/../$OSLibDir can be considered closer to the GCC
installation then the system root. The comment should not apply.
After path resolution, it duplicates a subsequent -L entry. The entry below
(lib/gcc/$triple/$version/../../../../$OSLibDir) usually does not exist (e.g.
Arch Linux; Debian cross gcc). When it exists, it typically just has ld.so (e.g.
Debian native gcc) which cannot cause collision. Removing the -L (similar to
reordering it) is therefore justified.
If the mul add two users, one of which was a sext.w, the mul
would also be selected to a MULW before our pattern runs. This
causes the ANDs to now be used by the already selected MULW and
the mul we still need to select. They are unneeded on the MULW
since MULW only reads the lower bits. So they get selected to
SLLI+SRLI for the MULW use. The use for the
(mul (and X, 0xffffffff), (and Y, 0xffffffff)) manages to reuse
the SLLI.
The end result is increased register pressure and no improvement
to how soon we can start the MULW.
This reapplies b5d9a3c / https://reviews.llvm.org/D98609 with a one line fix in
processExistingConstants to skip() when erasing a constant we've already seen.
Original commit message:
1) Change the canonicalizer to walk the function in top-down order instead of
bottom-up order. This composes well with the "top down" nature of constant
folding and simplification, reducing iterations and re-evaluation of ops in
simple cases.
2) Explicitly enter existing constants into the OperationFolder table before
canonicalizing. Previously we would "constant fold" them and rematerialize
them, wastefully recreating a bunch fo constants, which lead to pointless
memory traffic.
Both changes together provide a 33% speedup for canonicalize on some mid-size
CIRCT examples.
One artifact of this change is that the constants generated in normal pattern
application get inserted at the top of the function as the patterns are applied.
Because of this, we get "inverted" constants more often, which is an aethetic
change to the IR but does permute some testcases.
Differential Revision: https://reviews.llvm.org/D99006
This optimization is trying to save SRLI instructions needed to
implement the ANDs. If we have zext.w we won't save anything.
Because we don't check that the multiply is the only user of the
AND we might even increase instruction count.
This patterns computes the full 64 bit product of a 32x32 unsigned
multiply. This requires a two pairs of SLLI+SRLI to zero the
upper 32 bits of the inputs.
We can do better than this by using two SLLI to move the lower
bits to the upper bits then use MULHU to compute the product. This
is the high half of a full 64x64 product. Since we put 32 0s in the lower
bits of the inputs we know the 128-bit product will have zeros in the
lower 64 bits. So the upper 64 bits, which MULHU computes, will contain
the original 64 bit product we were after.
The same trick would work for (mul (sext_inreg X, i32), (sext_inreg Y, i32))
using MULHS, but sext_inreg is sext.w which is already one instruction so we
wouldn't save anything.
Differential Revision: https://reviews.llvm.org/D99026
This is a similarity visualization tool that accepts a Module and
passes it to the IRSimilarityIdentifier. The resulting SimilarityGroups
are output in a JSON file.
Tests are found in test/tools/llvm-sim and check for the file not found,
a bad module, and that the JSON is created correctly.
Reviewers: paquette, jroelofs, MaskRay
Recommit of: 15645d044b to fix linking
errors.
Differential Revision: https://reviews.llvm.org/D86974
BUILD_SHARED_LIBS build llvm component as shared library,
which can reduce the size a lot.
Normally, the binary use ORIGIN../lib to load component libraries,
unfortunatly, ORIGIN is not supported by AIX ld.
We hardcoded the build lib and install lib path in rpath for now
to enable BUILD_SHARED_LIBS build.
Understand that this is not perfect solution,
we can update this when we find better solution.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D98901
This makes the settings available for use in other passes by housing
them within the Support lib, but NFC otherwise.
See D98898 for the proposed usage in SimplifyCFG
(where this change was originally included).
Differential Revision: https://reviews.llvm.org/D98945
Also:
- Fix a bug that crept in when fixing a buildbot failure in
f7be9db622
- Use mlsize_t for cstr_to_string as that is what
caml_alloc_string specifies.
Differential Revision: https://reviews.llvm.org/D98851
Don't emit a warning if the `continue` appears in a switch context as changing it to `break` will break out of the switch rather than a do loop containing the switch.
Fixes https://llvm.org/PR49492.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D98338