There is a bit (MH_PIE) in the flags field of the mach_header which tells
the kernel is a program was built position independent (for ASLR). The linker
automatically attempts to build programs PIE if they are built for a recent
OS version. But the -pie and -no_pie options override that default behavior.
llvm-svn: 217408
Mach-O has a "fat" (or "universal") variant where the same contents built for
different architectures are concatenated into one file with a table-of-contents
header at the start. But this leaves a dilemma for the linker - which
architecture to use.
Normally, the linker command line -arch is used to force which slice of any fat
files are used. The clang compiler always passes -arch to the linker when
invoking it. But some Makefiles invoke the linker directly and don’t specify
the -arch option. For those cases, the linker scans all input files in command
line order and finds the first non-fat object file. Whatever architecture it
is becomes the architecture for the link.
llvm-svn: 217189
Both options control the final scope of atoms.
When -exported_symbols_list <file> is used, the file is parsed into one
symbol per line in the file. Only those symbols will be exported (global)
in the final linked image.
The -keep_private_externs option is only used with -r mode. Normally, -r
mode reduces private extern (scopeLinkageUnit) symbols to non-external. But
add the -keep_private_externs option keeps them private external.
llvm-svn: 216146
The darwin linker has an option, heavily used by Xcode, in which, instead
of listing all input files on the command line, the input file paths are
written to a text file and the path of that text file is passed to the linker
with the -filelist option (similar to @file).
In order to make test cases for this, I generalized the -test_libresolution
option to become -test_file_usage.
llvm-svn: 215762
Darwin has a packaging mechanism for shared libraries and headers called
frameworks. A directory Foo.framework contains a shared library binary file
"Foo" and a subdirectory "Headers". Most OS frameworks are all in one
directory /System/Library/Frameworks/. As a linking convenience, the linker
option "-framework Foo" means search the framework directories specified
with -F (analogous to -L) looking for a shared library Foo.framework/Foo.
llvm-svn: 215680
In general two-level namespace means each program records exactly which dylib
each undefined (imported) symbol comes from. But, sometimes the implementor
wants to hide the implementation dylib. For instance libSytem.dylib is the base
dylib all Darwin programs must link with. A few years ago it was split up
into two dozen dylibs by all are hidden behind libSystem.dylib which re-exports
each sub-dylib. All clients still think libSystem.dylib is the implementor.
To support this, the linker must load "indirect" dylibs and not just the
"direct" dylibs specified on the command line. This is done in the
createImplicitFiles() method after all command line specified files are
loaded. Since an indirect dylib may have already been loaded as a direct dylib
(or indirectly via a previous direct dylib), the MachOLinkingContext keeps
a list of all loaded dylibs.
With this change hello world can now be linked against the real OS or SDK.
llvm-svn: 215605
The tests assume the path separator is '/', but if you run
them on Windows it is '\'. As a result the tests are failing
on Windows. This should be the minimal change to make these
tests to pass on Windows platform.
Differential Revision: http://reviews.llvm.org/D4710
llvm-svn: 214990
The -sectalign option is used to increase the alignment required for a section.
It required some reworking of how the __TEXT segment is laid out because that
segment also contains the mach_header and load commands. And the size of load
commands depend on the number of segments, sections, and dependent dylibs used.
Using this option will simplify some future test cases because the final
address of code can be pinned down, making tests of its content easier.
llvm-svn: 214268
All architecture specific handling is now done in the appropriate
ArchHandler subclass.
The StubsPass and GOTPass have been simplified. All architecture specific
variations in stubs are now encoded in a table which is vended by the
current ArchHandler.
llvm-svn: 213187
These behave slightly idiosyncratically in the best of cases, and have
additional hacks layered on top of that for compatibility with badly behaved
build systems (via ld64).
For -lXYZ:
+ If XYZ is actually XY.o then search all library paths for XY.o
+ Otherwise search all library paths, first for libXYZ.dylib, then libXYZ.a
+ By default the library paths are /usr/lib and /usr/local/lib in that order.
For -syslibroot:
+ -syslibroot options apply to absolute paths in the search order.
+ All -syslibroot prefixes that exist are added to the search path *instead*
of the original.
+ If no -syslibroot prefixed path exists, the original is kept.
+ Hacks^WExceptions:
+ If only 1 -syslibroot is given and doesn't contain /usr/lib or
/usr/local/lib, that path is dropped entirely. (rdar://problem/6438270).
+ If the last -syslibroot is "/", all of them are ignored entirely.
(rdar://problem/5829579).
At least, that's my best interpretation of what ld64 does in buildSearchPaths.
llvm-svn: 212706
This restores the debug output to how it was before r197727 broke it. This
went undetected because the corresponding test was never run due to broken
feature detection.
llvm-svn: 202079
It will configure resonable defaults for other settings in the
MachOLinkingContext object based on the parameters.
Patch by Joe Ranieri
llvm-svn: 197851
The main changes are in:
include/lld/Core/Reference.h
include/lld/ReaderWriter/Reader.h
Everything else is details to support the main change.
1) Registration based Readers
Previously, lld had a tangled interdependency with all the Readers. It would
have been impossible to make a streamlined linker (say for a JIT) which
just supported one file format and one architecture (no yaml, no archives, etc).
The old model also required a LinkingContext to read an object file, which
would have made .o inspection tools awkward.
The new model is that there is a global Registry object. You programmatically
register the Readers you want with the registry object. Whenever you need to
read/parse a file, you ask the registry to do it, and the registry tries each
registered reader.
For ease of use with the existing lld code base, there is one Registry
object inside the LinkingContext object.
2) Changing kind value to be a tuple
Beside Readers, the registry also keeps track of the mapping for Reference
Kind values to and from strings. Along with that, this patch also fixes
an ambiguity with the previous Reference::Kind values. The problem was that
we wanted to reuse existing relocation type values as Reference::Kind values.
But then how can the YAML write know how to convert a value to a string? The
fix is to change the 32-bit Reference::Kind into a tuple with an 8-bit namespace
(e.g. ELF, COFFF, etc), an 8-bit architecture (e.g. x86_64, PowerPC, etc), and
a 16-bit value. This tuple system allows conversion to and from strings with
no ambiguities.
llvm-svn: 197727
This patch adds support for converting normalized mach-o to and from binary
mach-o. It also changes WriterMachO (which previously directly wrote a
mach-o binary given a set of Atoms) to instead do it in two steps. The first
step uses normalizedFromAtoms() to convert Atoms to normalized mach-o, and the
second step uses writeBinary() which to generate the mach-o binary file.
llvm-svn: 194167
Enable this for the following flavors
a) core
b) gnu
c) darwin
Its disabled for the flavor PECOFF. Convenient markers are added with FIXME
comments in the Driver that would be removed and code removed from each flavor.
llvm-svn: 193585
This is the first step in how I plan to get mach-o object files support into
lld. We need to be able to test the mach-o Reader and Write on systems without
a mach-o tools. Therefore, we want to support a textual way (YAML) to represent
mach-o files.
MachONormalizedFile.h defines an in-memory abstraction of the content of mach-o
files. The in-memory data structures are always native endianess and always
use 64-bit sizes. That internal data structure can then be converted to or
from three different formats: 1) yaml (text) encoded mach-o, 2) binary mach-o
files, 3) lld Atoms.
This patch defines the internal model and uses YAML I/O to implement the
conversion to and from the model to yaml. The next patch will implement
the conversion from normalized to binary mach-o.
This patch includes unit tests to validate the yaml conversion APIs.
llvm-svn: 192147
Changes :-
a) Functionality in InputGraph to insert Input elements at any position
b) Functionality in the Resolver to use nextFile
c) Move the functionality of assigning file ordinals to InputGraph
d) Changes all inputs to MemoryBuffers
e) Remove LinkerInput, InputFiles, ReaderArchive
llvm-svn: 192081
This patch inverts the return value of these functions, so that they return
"true" on success and "false" on failure. The meaning of boolean return value
was mixed in LLD; for example, InputGraph::validate() returns true on success.
With this patch they'll become consistent.
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1748
llvm-svn: 191341
Also change some local variable names: "ti" -> "context" and
"_targetInfo" -> "_context".
Differential Revision: http://llvm-reviews.chandlerc.com/D1301
llvm-svn: 187823