Commit Graph

10 Commits

Author SHA1 Message Date
Francis Visoiu Mistrih 25528d6de7 [CodeGen] Unify MBB reference format in both MIR and debug output
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.

The MIR printer prints the IR name of a MBB only for block definitions.

* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix

Differential Revision: https://reviews.llvm.org/D40422

llvm-svn: 319665
2017-12-04 17:18:51 +00:00
Craig Topper b8596e4d1d [X86] Cleanup 'x' and 'y' mnemonic suffixes for vcvtpd2dq/vcvttpd2dq/vcvtpd2ps and similar instructions.
-Don't print the 'x' suffix for the 128-bit reg/mem VEX encoded instructions in Intel syntax. This is consistent with the EVEX versions.
-Don't print the 'y' suffix for the 256-bit reg/reg VEX encoded instructions in Intel or AT&T syntax. This is consistent with the EVEX versions.
-Allow the 'x' and 'y' suffixes to be used for the reg/mem forms when we're assembling using Intel syntax.
-Allow the 'x' and 'y' suffixes on the reg/reg EVEX encoded instructions in Intel or AT&T syntax. This is consistent with what VEX was already allowing.

This should fix at least some of PR28850.

llvm-svn: 286787
2016-11-14 01:53:29 +00:00
Simon Pilgrim b65d476549 [X86] Regenerate fp truncate tests
llvm-svn: 279387
2016-08-20 21:56:33 +00:00
Michael Kuperstein e88a021bf4 [X86] ABI change for x86-32: pass 3 vector arguments in-register instead of 4, except on Darwin.
This changes the ABI used on 32-bit x86 for passing vector arguments. 
Historically, clang passes the first 4 vector arguments in-register, and additional vector arguments on the stack, regardless of platform. That is different from the behavior of gcc, icc, and msvc, all of which pass only the first 3 arguments in-register.
The 3-register convention is documented, unofficially, in Agner's calling convention guide, and, officially, in the recently released version 1.0 of the i386 psABI.

Darwin is kept as is because the OS X ABI Function Call Guide explicitly documents the current (4-register) behavior.

This fixes PR21510

Differential revision: http://reviews.llvm.org/D9644

llvm-svn: 237682
2015-05-19 11:06:56 +00:00
Chandler Carruth 99627bfbff [x86] Enable the new vector shuffle lowering by default.
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.

Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.

When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.

It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.

There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).

Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]

I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.

llvm-svn: 219046
2014-10-04 03:52:55 +00:00
Chandler Carruth b264e4a325 [x86] Regenerate a number of FileCheck assertions with my script for
test cases that will change with the new vector shuffle lowering. This
gives us a nice baseline for deltas against. I've checked and removed
the cases where there were weird register usage being pinned down, and
all of these are extremely pin-pointed tests so fully checking them
seems very appropriate.

llvm-svn: 218941
2014-10-03 01:06:32 +00:00
Michael Liao e26b0313de Specify CPU model to avoid breaking ATOM builds
llvm-svn: 165638
2012-10-10 18:04:52 +00:00
Michael Liao e999b865dd Add support for FP_ROUND from v2f64 to v2f32
- Due to the current matching vector elements constraints in
  ISD::FP_ROUND, rounding from v2f64 to v4f32 (after legalization from
  v2f32) is scalarized. Add a customized v2f32 widening to convert it
  into a target-specific X86ISD::VFPROUND to work around this
  constraints.

llvm-svn: 165631
2012-10-10 16:53:28 +00:00
Benjamin Kramer ba446cc12a Make tests more useful.
lit needs a linter ...

llvm-svn: 130126
2011-04-25 10:12:01 +00:00
Eli Friedman 4c192305bf PR9535: add support for splitting and scalarizing vector ISD::FP_ROUND.
Also cleaning up some duplicated code while I'm here.

llvm-svn: 128176
2011-03-23 22:18:48 +00:00