After some internal discussions, we agreed that the raw output style had
outlived its usefulness. It was originally created before we had even
thought of dumping to YAML, and it was intended to give us some insight
into the internals of a PDB file. Now we have YAML mode which does
almost exactly this but is more powerful in that it can round-trip back
to a PDB, which the raw mode could not do. So the raw mode had become
purely a maintenance burden.
One option was to just delete it. However, its original goal was to be
as readable as possible while staying close to the "metal" - i.e.
presenting the output in a way that maps directly to the underlying file
format. We don't actually need that last requirement anymore since it's
covered by the yaml mode, so we could repurpose "raw" mode to actually
just be as readable as possible.
This patch implements about 80% of the functionality previously in raw
mode, but in a completely different style that is more akin to what
cvdump outputs. Records are very compressed, often times appearing on
just one line. One nice thing about this is that it makes full record
matching easier, because you can grep for indices, names, and leaf types
on a single line often.
See the tests for some examples of what the new output looks like.
Note that this patch actually regresses the functionality of raw mode in
a few areas, but only because the patch was already unreasonably large
and going 100% would have been even worse. Specifically, this patch is
missing:
The ability to dump module debug subsections (checksums, lines, etc)
The ability to dump section headers
Aside from that everything is here. While goign through the tests fixing
them all up, I found many duplicate tests. They've been deleted. In
subsequent patches I will go through and re-add the missing
functionality.
Differential Revision: https://reviews.llvm.org/D34191
llvm-svn: 305495
When we get an unknown symbol type, we might as well at least
dump it. Same goes for round-tripping through YAML, we can
dump the record contents as raw bytes even if we don't know
how to interpret it semantically.
llvm-svn: 305248
This is to reflect the evolving nature of the tool as being
useful for more than just dumping PDBs, as it can do many other
things.
Differential Revision: https://reviews.llvm.org/D34062
llvm-svn: 305106
Summary:
RelocOffset is a 32-bit value, but we previously truncated it to 16 bits.
Fixes PR33335.
Reviewers: zturner, hiraditya!
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33968
llvm-svn: 305043
This adds support for Symbols, StringTable, and FrameData subsection
types. Even though these subsections rarely if ever appear in a PDB
file (they are usually in object files), there's no theoretical reason
why they *couldn't* appear in a PDB. The real issue though is that in
order to add support for dumping and writing them (which will be useful
for object files), we need a way to test them. And since there is no
support for reading and writing them to / from object files yet, making
PDB support them is the best way to both add support for the underlying
format and add support for tests at the same time. Later, when we go
to add support for reading / writing them from object files, we'll need
only minimal changes in the underlying read/write code.
llvm-svn: 305037
This is the same change for the YAML Output style applied to the
raw output style. Previously we would queue up all subsections
until every one had been read, and then output them in a pre-
determined order. This was because some subsections need to be
read first in order to properly dump later subsections. This
patch allows them to be dumped in the order they appear.
Differential Revision: https://reviews.llvm.org/D34015
llvm-svn: 305034
The pdb2yaml and raw subcommands did something very
similar but with a different output format, and they
used a lot of the same command line options, but each
one re-implemented the command line option with slightly
different spellings / options. This patch merges them
together into a single definition which is shared by
both subcommands. This new syntax also allows for more
flexibility in the way debug subsections are dumped.
Differential Revision: https://reviews.llvm.org/D33996
llvm-svn: 305032
While it's not entirely clear why a compiler or linker might
put this information into an object or PDB file, one has been
spotted in the wild which was causing llvm-pdbdump to crash.
This patch adds support for reading-writing these sections.
Since I don't know how to get one of the native tools to
generate this kind of debug info, the only test here is one
in which we feed YAML into the tool to produce a PDB and
then spit out YAML from the resulting PDB and make sure that
it matches.
llvm-svn: 304738
Previously we would expect certain subsections to appear
in a certain order because some subsections would reference
other subsections, but in practice we need to support
arbitrary orderings since some object file and PDB file
producers generate them this way. This also paves the
way for supporting Yaml <-> Object File conversion of
CodeView, since Object Files typically have quite a
large number of subsections in their debug info.
Differential Revision: https://reviews.llvm.org/D33807
llvm-svn: 304588
Object files have symbol records not aligned to any particular
boundary (e.g. 1-byte aligned), while PDB files have symbol
records padded to 4-byte aligned boundaries. Since they share
the same reading / writing code, we have to provide an option to
specify the alignment and propagate it up to the producer or
consumer who knows what the alignment is supposed to be for the
given container type.
Added a test for this by modifying the existing PDB -> YAML -> PDB
round-tripping code to round trip symbol records as well as types.
Differential Revision: https://reviews.llvm.org/D33785
llvm-svn: 304484
Summary:
DbiStreamBuilder calculated the offset of the source file names inside
the file info substream as the size of the file info substream minus
the size of the file names. Since the file info substream is padded to
a multiple of 4 bytes, this caused the first file name to be aligned
on a 4-byte boundary. By contrast, DbiModuleList would read the file
names immediately after the file name offset table, without skipping
to the next 4-byte boundary. This change makes it so that the file
names are written to the location where DbiModuleList expects them,
and puts any necessary padding for the file info substream after the
file names instead of before it.
Reviewers: amccarth, rnk, zturner
Reviewed By: amccarth, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33475
llvm-svn: 303917
Summary:
Previously, the yaml2pdb subcommand of llvm-pdbdump only
included object file names in module info if a module info stream was
present. This change makes it so that we include the object file name
even if there is no module info stream for the module. As a result,
running
llvm-pdbdump pdb2yaml -dbi-module-info original.pdb > original.yaml &&
llvm-pdbdump yaml2pdb -pdb=new.pdb original.yaml && llvm-pdbdump
pdb2yaml -dbi-module-info new.pdb > new.yaml now produces identical
original.yaml and new.yaml files.
Reviewers: amccarth, zturner
Reviewed By: zturner
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D33463
llvm-svn: 303891
Previous algotirhm assumed that types and ids are in a single
unified stream. For inputs that come from object files, this
is the case. But if the input is already a PDB, or is the result
of a previous merge, then the types and ids will already have
been split up, in which case we need an algorithm that can
accept operate on independent streams of types and ids that
refer across stream boundaries to each other.
Differential Revision: https://reviews.llvm.org/D33417
llvm-svn: 303577
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Similar to my previous fix, it turns out llvm-pdbdump has been
printing an incorrect value since the beginning of time, but
we didn't know it was incorrect. Specifically, we were interpreting
a TypeIndex as referencing a type from the TPI stream when it
actually should come from the IPI stream. So we were printing a
string that looked like a valid string, but was just from the
wrong place.
llvm-svn: 303403
Merging PDBs is a feature that will be used heavily by
the linker. The functionality already exists but does not
have deep test coverage because it's not easily exposed through
any tools. This patch aims to address that by adding the
ability to merge PDBs via llvm-pdbdump. It takes arbitrarily
many PDBs and outputs a single PDB.
Using this new functionality, a test is added for merging
type records. Future patches will add the ability to merge
symbol records, module information, etc.
llvm-svn: 303389
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
There is a lot of duplicate code for printing line info between
YAML and the raw output printer. This introduces a base class
that can be shared between the two, and makes some minor
cleanups in the process.
llvm-svn: 301728
The previous algorithm processed one character at a time, which is very
painful on a modern CPU. Replace it with xxHash64, which both already
exists in the codebase and is fairly fast.
Patch from Scott Smith!
Differential Revision: https://reviews.llvm.org/D32509
llvm-svn: 301487
We were already parsing and dumping this to the human readable
format, but not to the YAML format. This does so, in preparation
for reading it in and reconstructing the line information from
YAML.
llvm-svn: 301357
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
Summary:
This lets PDB readers lookup type record data by type index in O(log n)
time. It also enables makes `cvdump -t` work on PDBs produced by LLD.
cvdump will not dump a PDB that doesn't have an index-to-offset table.
The table is sorted by type index, and has an entry every 8KB. Looking
up a type record by index is a binary search of this table, followed by
a scan of at most 8KB.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31636
llvm-svn: 299958
When dumping classes, show where padding occurs, and at the end of the
class print statistics about how many bytes total of padding exist in a
class.
Since PDB doesn't specifically contain information about padding, we have
to mimic this by sort of reversing a small portion of the record layout
algorithm (e.g. looking at offsets and sizes and trying to determine
whether something is part of the same field or a new field).
Differential Revision: https://reviews.llvm.org/D31800
llvm-svn: 299869
* Adds support for pointers to arrays, which was missing
* Adds some tests
* Improves consistency of const and volatile qualifiers
* Eliminates non-composable special case code for arrays and function by using
a more general recursive approach
* Has a hack for getting the calling convention into the right spot for
pointer-to-functions
Given the rapid changes happenning in llvm-pdbdump, this may be difficult to
merge.
Differential Revision: https://reviews.llvm.org/D31832
llvm-svn: 299848
Previously when dumping class definitions, there were only
two modes - on or off. But it's useful to sometimes get a
little more fine-grained. For example, you might only want
to see the record layout (for example to look for extraneous
padding). This patch adds a third mode, layout mode, which
does exactly that. Only this-relative data members are
displayed in this mode.
Differential Revision: https://reviews.llvm.org/D31794
llvm-svn: 299733
This should work on all platforms now that r299006 has landed. Tested locally
on Windows and Linux.
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access the
summary information for the executable from the PDB.
Original Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 299019
Summary:
When dumping these records from an object file section, we should use
only one type database. However, when dumping from a PDB, we should use
two: one for the type stream and one for the IPI stream.
Certain type records that normally live in the .debug$T object file
section get moved over to the IPI stream of the PDB file and they get
new indices.
So far, I've noticed that the MSVC linker always moves these records
into IPI:
- LF_FUNC_ID
- LF_MFUNC_ID
- LF_STRING_ID
- LF_SUBSTR_LIST
- LF_BUILDINFO
- LF_UDT_MOD_SRC_LINE
These records have index fields that can point into TPI or IPI. In
particular, LF_SUBSTR_LIST and LF_BUILDINFO point to LF_STRING_ID
records to describe compilation command lines.
I've modified the dumper to have an optional pointer to the item DB, and
to do type name lookup of these fields in that DB. See printItemIndex.
The result is that our pdbdump-headers.test is more faithful to the PDB
contents and the output is less confusing.
Reviewers: ruiu
Subscribers: amccarth, zturner, llvm-commits
Differential Revision: https://reviews.llvm.org/D31309
llvm-svn: 298649
Reverting until I can figure out the root cause.
Revert "Re-land: Make NativeExeSymbol a concrete subclass of NativeRawSymbol [PDB]"
This reverts commit f461a70cc376f0f91c8b4917be79479cc86330a5.
llvm-svn: 298626
Use the -color-output option explicitly to eliminate the ANSI color codes in
pdb-native-summary.test. (The default should have done this.)
llvm-svn: 298625
The new test should pass on all platforms now that llvm-pdbdump has the
`-color-output` option.
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access
the summary information for the executable from the PDB.
Original Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 298623
They are structurally the same, but now we need to distinguish them
because one record lives in the IPI stream and the other lives in TPI.
llvm-svn: 298474
This was originally reported in pr32249, uncovered by PTVS-Studio.
There was no code coverage for this path because it was
difficult to construct odd-case PDB files that were not generated
by cl.
Now that we can write construct minimal PDB files from YAML,
it's easy to construct fragments that generate whatever we want.
In this patch I add a test that creates 2 type records. One
with a unique name, and one without. I verify that we can go
from PDB to Yaml with no errors. In a future patch I'd like
to add something like llvm-pdbdump raw -lookup-type that will
just dump one record and nothing else, which should make it
a bit cleaner to find this kind of thing.
llvm-svn: 298017
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access
the summary information for the executable from the PDB.
Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 298005
This was discovered when running `llvm-pdbdump diff` against
two files, the second of which was generated by running the
first one through pdb2yaml and then yaml2pdb.
The second one was missing some bytes from the PDB Stream, and
tracking this down showed that at the end of the PDB Stream were
some additional bytes that we were ignoring. Looking back
to the reference code, these seem to specify some additional
flags that indicate whether the PDB supports various optional
features.
This patch adds support for reading, writing, and round-tripping
these flags through YAML and the raw dumper, and updates the
tests accordingly.
llvm-svn: 297984
Previously we did not have support for writing detailed
module information for each module, as well as the symbol
records. This patch adds support for this, and in doing
so enables the ability to construct minimal PDBs from
just a few lines of YAML. A test is added to illustrate
this functionality.
llvm-svn: 297900
Together, these allow lldb-pdbdump to list all the modules from a PDB using a
native reader (rather than DIA).
Note that I'll probably be specializing NativeRawSymbol in a subsequent patch.
Differential Revision: https://reviews.llvm.org/D30956
llvm-svn: 297883
This is not a list of pairs, it is a hash table data structure. We now
correctly parse this out and dump it from llvm-pdbdump.
We still need to understand the conditions that lead to a type
getting an entry in the hash adjuster table. That will be done
in a followup investigation / patch.
Differential Revision: https://reviews.llvm.org/D29090
llvm-svn: 293090
This is the 3rd of 3 patches to get reading and writing of
CodeView symbol and type records to use a single codepath.
Differential Revision: https://reviews.llvm.org/D26427
llvm-svn: 289978
Using a pattern similar to that of YamlIO, this allows
us to have a single codepath for translating codeview
records to and from serialized byte streams. The
current patch only hooks this up to the reading of
CodeView type records. A subsequent patch will hook
it up for writing of CodeView type records, and then a
third patch will hook up the reading and writing of
CodeView symbols.
Differential Revision: https://reviews.llvm.org/D26040
llvm-svn: 285836
Summary: This adds support for dumping the globals stream from PDB files using llvm-pdbdump, similar to the support we have for the publics stream.
Reviewers: ruiu, zturner
Subscribers: beanz, mgorny, modocache
Differential Revision: https://reviews.llvm.org/D25801
llvm-svn: 284861
This is the first step towards round-tripping symbol information,
and thusly being able to write symbol information to a PDB.
This patch writes the symbol information for each compiland to
the Yaml when running in pdb2yaml mode. There's still some loose
ends, such as what to do about relocations (necessary in order to
print linkage names), how to print enums with friendly names, and
how to give the dumper access to the StringTable, but this is a
good first start.
llvm-svn: 283641
When we create a PDB file using PDBFileBuilder, the information
in the superblock, such as the size of the resulting file, is not
available.
Previously, PDBFileBuilder::initialize took a superblock assuming
that all the members of the struct are correct. That is useful when
you want to restore the exact information from a YAML file, but
that's probably the only use case in which that is useful.
When we are creating a PDB file on the fly, we have to backfill the
members.
This patch redefines PDBFileBuilder::initialize to take only a
block size. Now all the other members are left as default values,
so that they'll be updated when commit() is called.
Differential Revision: https://reviews.llvm.org/D25108
llvm-svn: 282944
This completes being able to write all the interesting
values of a PDB TPI stream.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24370
llvm-svn: 281555
We have various command line options that print the type of a
stream, the size of a stream, etc but nowhere that it can all be
viewed together.
Since a previous patch introduced the ability to dump the bytes
of a stream, this seems like a good place to present a full view
of the stream's properties including its size, what kind of data
it represents, and the blocks it occupies. So I added the
ability to print that information to the -stream-data command
line option.
llvm-svn: 281077
I ran into a situation where I wanted to print out the contents of
page 6 of a PDB as a binary blob, and there was no straightforward
way to do that.
In addition to adding that, this patch also adds the ability to dump
a stream by index as a binary blob, and it will stitch together all
the blocks and dump the whole thing as one seemingly contiguous
sequence of bytes.
llvm-svn: 281070
This writes the full sequence of type records described in
Yaml to the TPI stream of the PDB file.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24316
llvm-svn: 281063
This was originally submitted in r280549, and reverted in r280577
due to breaking one MSVC buildbot. The issue is that MSVC 2013
doesn't synthesize move constructors. So even though i was
writing std::move(A) it was copying it, leading to a bogus ArrayRef.
The solution here is to simply remove the std::vector<> from the
type, since it is unused and unnecessary. This way the ArrayRef
continues to point into the original memory backing the CVType.
llvm-svn: 280769
Before we were kind of imitating the behavior of a Yaml sequence
by outputting each record one after the other. This makes it a
little cumbersome when we want to go the other direction -- from
Yaml to Pdb. So this treats FieldList records as no different than
any other list of records, by printing them as a Yaml sequence with
the exact same format.
llvm-svn: 280549
The original patch was breaking some buildbots due to an
incorrect ordering of function definitions which caused some
compilers to recognize a definition but others to not.
llvm-svn: 279089
pdbdump calls DbiStreamBuilder::commit through PDBFileBuilder::commit
without calling DbiStreamBuilder::finalize. Because `finalize` initializes
`Header` member, `Header` remained nullptr which caused a crash bug.
Differential Revision: https://reviews.llvm.org/D23143
llvm-svn: 277681
The FPM is split at regular intervals across the MSF file, as the MS code
suggests. It turns out that the value of the interval is precisely the
block size. If the block size is 4096, then there are two Fpm pages every
4096 blocks.
So here we teach the PDBFile class to parse a split FPM, and also add more
options when dumping the FPM to display some additional information such
as orphaned pages (pages which the FPM says are allocated, but which
nothing appears to use), use after free pages (pages which the FPM says
are not allocated, but which are referenced by a stream), and multiple use
pages (pages which the FPM says are allocated but are used more than
once).
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D23022
llvm-svn: 277388
Block 1 and 2 of an MSF file are bit vectors that represent the
list of blocks allocated and free in the file. We had been using
these blocks to write stream data and other data, so we mark them
as the free page map now. We don't yet serialize these pages to
the disk, but at least we make a note of what it is, and avoid
writing random data to them.
Doing this also necessitated cleaning up some of the tests to be
more general and hardcode fewer values, which is nice.
llvm-svn: 275629
Previously we would read a PDB, then write some of it back out,
but write the directory, super block, and other pertinent metadata
back out unchanged. This generates incorrect PDBs since the amount
of data written was not always the same as the amount of data read.
This patch changes things to use the newly introduced `MsfBuilder`
class to write out a correct and accurate set of Msf metadata for
the data *actually* written, which opens up the door for adding and
removing type records, symbol records, and other types of data to
an existing PDB.
llvm-svn: 275627
This will be useful once we start adding the ability to dump type
records and symbol records, since it will allow us to generate
mergeable information instead of information that specifies an
entire file.
llvm-svn: 275109
Somehow all the functionality to write PDB files got removed,
probably accidentally when uploading the patch perhaps the wrong
one got uploaded. This re-adds all the code, as well as the
corresponding test.
llvm-svn: 274248
The basic structure is that once a list record goes over 64K, the last
subrecord of the list is an LF_INDEX record that refers to the next
record. Because the type record graph must be toplogically sorted, this
means we have to emit them in reverse order. We build the type record in
order of declaration, so this means that if we don't want extra copies,
we need to detect when we were about to split a record, and leave space
for a continuation subrecord that will point to the eventual split
top-level record.
Also adds dumping support for these records.
Next we should make sure that large method overload lists work properly.
llvm-svn: 273294
This reverts commit 879139e1c6577b09df52de56a6bab856a19ed185.
This was committed accidentally when I blindly typed git svn
dcommit instead of the command to generate a patch.
llvm-svn: 272693
This is the simplest possible patch to get some kind of YAML
output. All it dumps is the MSF header fields so that in
theory an empty MSF file could be reconstructed.
Reviewed By: ruiu, majnemer
Differential Revision: http://reviews.llvm.org/D20971
llvm-svn: 271939
The data strucutre in the new FPO stream is described in the
PE/COFF spec. There is one record per function if frame pointer
is omitted.
Differential Revision: http://reviews.llvm.org/D20999
llvm-svn: 271926
When printing line information and file checksums, we were printing
the file offset field from the struct header. This teaches
llvm-pdbdump how to turn those numbers into the filename. In the
case of file checksums, this is done by looking in the global
string table. In the case of line contributions, this is done
by indexing into the file names buffer of the DBI stream. Why
they use a different technique I don't know.
llvm-svn: 271630
To facilitate this, a couple of changes had to be made:
1. `ModuleSubstream` got moved from `DebugInfo/PDB` to
`DebugInfo/CodeView`, and various codeview related types are defined
there. It turns out `DebugInfo/CodeView/Line.h` already defines many of
these structures, but this is really old code that is not endian aware,
doesn't interact well with `StreamInterface` and not very helpful for
getting stuff out of a PDB. Eventually we should migrate the old readobj
`COFFDumper` code to these new structures, or at least merge their
functionality somehow.
2. A `ModuleSubstream` visitor is introduced. Depending on where your
module substream array comes from, different subsets of record types can
be expected. We are already hand parsing these substream arrays in many
places especially in `COFFDumper.cpp`. In the future we can migrate these
paths to the visitor as well, which should reduce a lot of code in
`COFFDumper.cpp`.
Differential Revision: http://reviews.llvm.org/D20936
Reviewed By: ruiu, majnemer
llvm-svn: 271621
This first pass only splits apart the records and dumps the line
info kinds and binary data. Subsequent patches will parse out
the binary data into more useful information and dump it in
detail.
llvm-svn: 271576
Unlike other sections that can grow to any size, the COFF section header
stream has maximum length because each record is fixed size and the COFF
file format limits the maximum number of sections. So I decided to not
create a specific stream class for it. Instead, I added a member function
to DbiStream class which returns a vector of COFF headers.
Differential Revision: http://reviews.llvm.org/D20717
llvm-svn: 271557