deallocation function (and the corresponding unsized deallocation function has
been declared), emit a weak discardable definition of the function that
forwards to the corresponding unsized deallocation.
This allows a C++ standard library implementation to provide both a sized and
an unsized deallocation function, where the unsized one does not just call the
sized one, for instance by putting both in the same object file within an
archive.
llvm-svn: 194055
CodeGenABITypes is a wrapper built on top of CodeGenModule that exposes
some of the functionality of CodeGenTypes (held by CodeGenModule),
specifically methods that determine the LLVM types appropriate for
function argument and return values.
I addition to CodeGenABITypes.h, CGFunctionInfo.h is introduced, and the
definitions of ABIArgInfo, RequiredArgs, and CGFunctionInfo are moved
into this new header from the private headers ABIInfo.h and CGCall.h.
Exposing this functionality is one part of making it possible for LLDB
to determine the actual ABI locations of function arguments and return
values, making it possible for it to determine this for any supported
target without hard-coding ABI knowledge in the LLDB code.
llvm-svn: 193717
The general strategy is to create template versions of the conversion function and static invoker and then during template argument deduction of the conversion function, create the corresponding call-operator and static invoker specializations, and when the conversion function is marked referenced generate the body of the conversion function using the corresponding static-invoker specialization. Similarly, Codegen does something similar - when asked to emit the IR for a specialized static invoker of a generic lambda, it forwards emission to the corresponding call operator.
This patch has been reviewed in person both by Doug and Richard. Richard gave me the LGTM.
A few minor changes:
- per Richard's request i added a simple check to gracefully inform that captures (init, explicit or default) have not been added to generic lambdas just yet (instead of the assertion violation).
- I removed a few lines of code that added the call operators instantiated parameters to the currentinstantiationscope. Not only did it not handle parameter packs, but it is more relevant in the patch for nested lambdas which will follow this one, and fix that problem more comprehensively.
- Doug had commented that the original implementation strategy of using the TypeSourceInfo of the call operator to create the static-invoker was flawed and allowed const as a member qualifier to creep into the type of the static-invoker. I currently kludge around it - but after my initial discussion with Doug, with a follow up session with Richard, I have added a FIXME so that a more elegant solution that involves the use of TrivialTypeSourceInfo call followed by the correct wiring of the template parameters to the functionprototypeloc is forthcoming.
Thanks!
llvm-svn: 191634
They were mostly copy&paste of each other, move it to CodeGenFunction. Of course
the two implementations have diverged over time; the one in CGExprCXX seems to
be the more modern one so I picked that one and moved it to CGClass which feels
like a better home for it. No intended functionality change.
llvm-svn: 189203
This field is just IsDefaulted && !IsDeleted; in all places it's used,
a simple check for isDefaulted() is superior anyway, and we were forgetting
to set it in a few cases.
Also eliminate CXXDestructorDecl::IsImplicitlyDefined, for the same reasons.
No intended functionality change.
llvm-svn: 187891
Based on Peter Collingbourne's destructor patches.
Prior to this change, clang was considering ?1 to be the complete
destructor and the base destructor, which was wrong. This lead to
crashes when clang tried to emit two LLVM functions with the same name.
In this ABI, TUs with non-inline dtors might not emit a complete
destructor. They are emitted as inline thunks in TUs that need them,
and they always delegate to the base dtors of the complete class and its
virtual bases. This change uses the DeferredDecls machinery to emit
complete dtors as needed.
Currently in clang try body destructors can catch exceptions thrown by
virtual base destructors. In the Microsoft C++ ABI, clang may not have
the destructor definition, in which case clang won't wrap the virtual
virtual base destructor calls in a try-catch. Diagnosing this in user
code is TODO.
Finally, for classes that don't use virtual inheritance, MSVC always
calls the base destructor (?1) directly. This is a useful code size
optimization that avoids emitting lots of extra thunks or aliases.
Implementing it also means our existing tests continue to pass, and is
consistent with MSVC's output.
We can do the same for Itanium by tweaking GetAddrOfCXXDestructor, but
it will require further testing.
Reviewers: rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1066
llvm-svn: 186828
This simplifies the core benefit of -flimit-debug-info by taking a more
systematic approach to avoid emitting debug info definitions for types
that only require declarations. The previous ad-hoc approach (3 cases
removed in this patch) had many holes.
The general approach (adding a bit to TagDecl and callback through
ASTConsumer) has been discussed with Richard Smith - though always open
to revision.
llvm-svn: 186262
This allows clang to use the backend parameter attribute 'returned' when generating 'this'-returning constructors and destructors in ARM and MSVC C++ ABIs.
llvm-svn: 185291
This function only makes sense there. Eventually it should no longer
be part of the CGCXXABI interface, as it is an Itanium-specific detail.
Differential Revision: http://llvm-reviews.chandlerc.com/D821
llvm-svn: 185213
1) Removed useless return value of CGCXXABI::EmitConstructorCall and CGCXXABI::EmitVirtualDestructorCall and implementations
2) Corrected last portion of CodeGenCXX/constructor-destructor-return-this to correctly test for non-'this'-return of virtual destructor calls
llvm-svn: 184330
In Itanium, dynamic classes have one vtable with several different
address points for dynamic base classes that can't share vtables.
In the MS C++ ABI, each vbtable that can't be shared gets its own
symbol, similar to how ctor vtables work in Itanium. However, instead
of mangling the subobject offset into the symbol, the unique portions of
the inheritance path are mangled into the symbol to make it unique.
This patch implements the MSVC 2012 scheme for forming unique vbtable
symbol names. MSVC 2010 use the same mangling with a different subset
of the path. Implementing that mangling and possibly others is TODO.
Each vbtable is an array of i32 offsets from the vbptr that points to it
to another virtual base subobject. The first entry of a vbtable always
points to the base of the current subobject, implying that it is the
same no matter which parent class contains it.
Reviewers: rjmccall
Differential Revision: http://llvm-reviews.chandlerc.com/D636
llvm-svn: 184309
The backend will now use the generic 'returned' attribute to form tail calls where possible, as well as avoid save-restores of 'this' in some cases (specifically the cases that matter for the ARM C++ ABI).
This patch also reverts a prior front-end only partial implementation of these optimizations, since it's no longer required.
llvm-svn: 184205
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
While we can't yet emit vbtables, this allows us to find virtual bases
of objects constructed in other TUs.
This make iostream hello world work, since basic_ostream virtually
inherits from basic_ios.
Differential Revision: http://llvm-reviews.chandlerc.com/D795
llvm-svn: 182870
unnamed bitfields.
Unnamed bitfields won't have an explicit copy operation
in the AST, which breaks the strong form of the invariant.
rdar://13816940
llvm-svn: 181289
a lambda.
Bug #1 is that CGF's CurFuncDecl was "stuck" at lambda invocation
functions. Fix that by generally improving getNonClosureContext
to look through lambdas and captured statements but only report
code contexts, which is generally what's wanted. Audit uses of
CurFuncDecl and getNonClosureAncestor for correctness.
Bug #2 is that lambdas weren't specially mapping 'self' when inside
an ObjC method. Fix that by removing the requirement for that
and using the normal EmitDeclRefLValue path in LoadObjCSelf.
rdar://13800041
llvm-svn: 181000
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
For constructors/desctructors that return 'this', if there exists a callsite
that returns 'this' and is immediately before the return instruction, make
sure we are using the return value from the callsite.
We don't need to keep 'this' alive through the callsite. It also enables
optimizations in the backend, such as tail call optimization.
Updated from r177211.
rdar://12818789
llvm-svn: 177541
For constructors/desctructors that return 'this', if there exists a callsite
that returns 'this' and is immediately before the return instruction, make
sure we are using the return value from the callsite.
We don't need to keep 'this' alive through the callsite. It also enables
optimizations in the backend, such as tail call optimization.
rdar://12818789
llvm-svn: 177211
aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
field to be memcpy'd, rather instead of ASTContext::getTypeAlign(<Field Type>).
For packed structs the alignment of a field may be less than the alignment of
the field's type.
<rdar://problem/13338585>
llvm-svn: 176512
bitfield. CGBitField::StorageAlignment holds the alignment in chars, but
emitMemcpy had been treating it as if it were held in bits, leading to
underaligned memcpys.
Related to PR15348.
Thanks very much to Chandler for the diagnosis.
llvm-svn: 176163
bitfield related issues.
The original commit broke Takumi's builder. The bug was caused by bitfield sizes
being determined by their underlying type, rather than the field info. A similar
issue with bitfield alignments showed up on closer testing. Both have been fixed
in this patch.
llvm-svn: 175389
move-constructors and move-assignment operators, use memcpy to copy adjacent
POD members.
Previously, classes with one or more Non-POD members would fall back on
element-wise copies for all members, including POD members. This often
generated a lot of IR. Without padding metadata, it wasn't often possible
for the LLVM optimizers to turn the element-wise copies into a memcpy.
This code hasn't yet received any serious tuning. I didn't see any serious
regressions on a self-hosted clang build, or any of the nightly tests, but
I think it's important to get this out in the wild to get more testing.
Insights, feedback and comments welcome.
Many thanks to David Blaikie, Richard Smith, and especially John McCall for
their help and feedback on this work.
llvm-svn: 174919
This does limit these typedefs to being sequences, but no current usage
requires them to be contiguous (we could expand this to a more general
iterator pair range concept at some point).
Also, it'd be nice if SmallVector were constructible directly from an ArrayRef
but this is a bit tricky since ArrayRef depends on SmallVectorBaseImpl for the
inverse conversion. (& generalizing over all range-like things, while nice,
would require some nontrivial SFINAE I haven't thought about yet)
llvm-svn: 170482
at whether the *selected* constructor would be trivial rather than considering
whether the array's element type has *any* non-trivial constructors of the
relevant kind.
llvm-svn: 167562