driver-mode recognition in clang (this is because the sysctl method
always returns one and only one executable path, even for an executable
with multiple links):
Fix DynamicLibraryTest.cpp on FreeBSD and NetBSD
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303285
We have to check gCrashRecoveryEnabled before using __try.
In other words, SEH works too well and we ended up recovering from
crashes in implicit module builds that we weren't supposed to. Only
libclang is supposed to enable CrashRecoveryContext to allow implicit
module builds to crash.
llvm-svn: 303279
Summary:
It avoids problems when other libraries raise exceptions. In particular,
OutputDebugString raises an exception that the debugger is supposed to
catch and suppress. VEH kicks in first right now, and that is entirely
incorrect.
Unfortunately, GCC does not support SEH, so I've kept the old buggy VEH
codepath around. We could fix it with SetUnhandledExceptionFilter, but
that is not per-thread, so a well-behaved library shouldn't set it.
Reviewers: zturner
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33261
llvm-svn: 303274
Since we use AddVectoredExceptionHandler, we get notified of
every exception that gets raised by a program. Sometimes these
are not necessarily errors though, and this can be especially
true when linking against a library that we have no control
over, and may raise an exception internally which it intends
to catch.
In particular, the Windows API OutputDebugString does exactly
this. It raises an exception inside of a __try / __except,
giving the debugger a chance to handle the exception to print
the message to the debug console.
But this doesn't interoperate nicely with our vectored exception
handler, which just sees another exception and decides that we
need to terminate the program.
Add a special case for this so that we ignore ODS exceptions
and continue normally.
Note that a better fix is to simply not use vectored exception
handlers and use SEH instead, but given that MinGW doesn't support
SEH, this is the only solution for MinGW.
Differential Revision: https://reviews.llvm.org/D33260
llvm-svn: 303219
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303015
We already counted the number of bits in the RHS so its pretty cheap to just check if the RHS is 1.
Differential Revision: https://reviews.llvm.org/D33154
llvm-svn: 302953
This helped the compiler generate better code for the single word case. It was able to remember that the bit width was still a single word when it created the Remainder APInt and not create code for it possibly being multiword.
llvm-svn: 302952
At this point in the code rhsWords is guaranteed to be non-zero and less than or equal to lhsWords. So if lhsWords is 1, rhsWords must also be 1. urem alread had the check removed so this makes all 3 consistent.
llvm-svn: 302930
Summary:
This adds a resize method to APInt that manages deleting/allocating storage for an APInt and changes its bit width. Use this to simplify code in copy assignment and divide.
The assignment code in particular was overly complicated. Treating every possible case as a separate implementation. I'm also pretty sure the clearUnusedBits code at the end was unnecessary. Since we always copying whole words from the source APInt. All unused bits should be clear in the source.
Reviewers: hans, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33073
llvm-svn: 302863
This time it actually occurred to me to change the #defines
to actually test the pre-processed out codepath. Hopefully
this time it works.
llvm-svn: 302752
This lets toString take advantage of the degenerate case checks in udivrem and is just generally cleaner.
One minor downside of this is that the divisor APInt now needs to be the same size as Tmp which requires an additional allocation. But we were doing a poor job of reusing allocations before so the new code should still be an improvement.
llvm-svn: 302704
The description says it returns the number of words needed to represent the results. But the way it was coded it always returns (lhsWords + rhsWords) or (lhsWords + rhsWords - 1). But the result could be even smaller than that and it wouldn't tell you.
No one uses the result today so rather than try to fix it, just remove it.
llvm-svn: 302551
The value of 'i' is always the smaller of DstParts and SrcParts so we can just use that fact to write all the code in terms of SrcParts and DstParts.
llvm-svn: 302408
Currently multiply is implemented in operator*=. Operator* makes a copy and uses operator*= to modify the copy.
Operator*= itself allocates a temporary buffer to hold the multiply result as it computes it. Then copies it to the buffer in *this.
Operator*= attempts to bound the size of the result based on the number of active bits in its inputs. It also has a couple special cases to handle 0 inputs without any memory allocations or multiply operations. The best case is that it calculates a single word regardless of input bit width. The worst case is that it calculates the a 2x input width result and drop the upper bits.
Since operator* uses operator*= it incurs two allocations, one for a copy of *this and one for the temporary allocation. Neither of these allocations are kept after the method operation is done.
The main usage in the backend appears to be ConstantRange::multiply which uses operator* rather than operator*=.
This patch moves the multiply operation to operator* and implements operator*= using it. This avoids the copy in operator*. operator* now allocates a result buffer sized the same width as its inputs no matter what. This buffer will be used as the buffer for the returned APInt. Finally, we reuse tcMultiply to implement the multiply operation. This function is capable of not calculating additional upper words that will be discarded.
This change does lose the special optimizations for the inputs using less words than their size implies. But it also removed the getActiveBits calls from all multiplies. If we think those optimizations are important we could look at providing additional bounds to tcMultiply to limit the computations.
Differential Revision: https://reviews.llvm.org/D32830
llvm-svn: 302171
Otherwise, each CPU has to manually specify the extensions it supports,
even though they have to be a superset of the base arch extensions.
And when there's redundant data there's stale data, so most of the CPUs
lie about the features they support (almost none lists AEK_FP).
Instead, do the saner thing: add the optional extensions on top of the
base extensions provided by the architecture.
The ARM TargetParser has the same behavior.
Differential Revision: https://reviews.llvm.org/D32780
llvm-svn: 302078
This was reverted due to a "missing" file, but in reality
what happened was that I renamed a file, and then due to
a merge conflict both the old file and the new file got
added to the repository. This led to an unused cpp file
being in the repo and not referenced by any CMakeLists.txt
but #including a .h file that wasn't in the repo. In an
even more unfortunate coincidence, CMake didn't report the
unused cpp file because it was in a subdirectory of the
folder with the CMakeLists.txt, and not in the same directory
as any CMakeLists.txt.
The presence of the unused file was then breaking certain
tools that determine file lists by globbing rather than
by what's specified in CMakeLists.txt
In any case, the fix is to just remove the unused file from
the patch set.
llvm-svn: 302042
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).
Reapplied - this time without changing line endings of existing files.
Differential Revision: https://reviews.llvm.org/D32769
llvm-svn: 302041
Currently several places assume the VAL member is always at least the same size as pVal. In particular for a memcpy in the move assignment operator. While this is a true assumption, it isn't good practice to assume this.
This patch gives the union a name so we can write the memcpy in terms of the union itself. This also adds a similar memcpy to the move constructor where we previously just copied using VAL directly.
This patch is mostly just a mechanical addition of the U in front of VAL and pVAL everywhere. But several constructors had to be modified since we can't directly initializer a field of named union from the initializer list.
Differential Revision: https://reviews.llvm.org/D30629
llvm-svn: 302040