The number of resumes should always be positive to let's make this an
unsigned everywhere. Also remove the unused 'localhost' parameter from
ConvertArgumentsForLaunchingInShell.
Replace the inline x86 watchpoint handling code with the reusable
NativeRegisterContextWatchpoint_x86. Implement watchpoint support
in NativeThreadFreeBSD and SIGTRAP handling for watchpoints.
Un-skip all concurrent_events tests as they pass with the new plugin.
Differential Revision: https://reviews.llvm.org/D90102
The statement that lldb-server can handle
decimal and hex numbers is misleading.
(it can only handle hex with 0x prefix)
Mentioning non decimal numbers at all
is just creating more confusion for anyone
who tries to use them with lldb-server.
Differential Revision: https://reviews.llvm.org/D89383
TestQuoting's different test methods all build their own test binaries but
we can just reuse the same test binary by merging all asserts into one method.
This reduces the test runtime from 8 seconds to 4 seconds on my machine.
This also removes the ability to have partial failures in this test, but given
how rarely this code is touched this seems like a fair tradeoff (and we will be
able to re-add this feature once we updated our test framework).
Some other small changes:
* Fixed that we cleanup "stdout.txt" instead of "output.txt" in the cleanup.
* Fixed some formatting issues.
* Call `build` instead of directly calling `buildDefault`.
clang supports option -fsplit-machine-functions and this test checks if the
backtraces are sane when functions are split.
With -fsplit-machine-functions, a function with profiles can get split into 2
parts, the original function containing hot code and a cold part as determined
by the profile info and the cold cutoff threshold.. The cold part gets the
".cold" suffix to disambiguate its symbol from the hot part and can be placed
arbitrarily in the address space.
This test checks if the back-trace looks correct when the cold part is executed.
Differential Revision: https://reviews.llvm.org/D90081
Displaying large packed bitfields did not work if one was accessing them
through a pointer, and he used the "->" notation ("[0]." notation is
fine). The reason for that is that implicit dereference in -> is plumbed
all the way down to ValueObjectChild::UpdateValue, where the process of
fetching the child value was forked for this flag. The bitfield
"sliding" code was implemented only for the branch which did not require
dereferencing.
This patch restructures the function to avoid this mistake. Processing
now happens in two stages.
- first the parent is dereferenced (if needed)
- then the child value is computed (this step includes sliding and is
common for both branches)
Differential Revision: https://reviews.llvm.org/D89236
Ensure that xs_xstate_bv is set correctly before calling
WriteRegisterSet(). The bit can be clear if the relevant registers
were at their initial state when they were read, and it needs to be set
in order to apply changes from the XState structure.
Differential Revision: https://reviews.llvm.org/D90105
Reset registers to their 'initial' state instead of a semi-random
pattern in write tests. While the latter might have been helpful
while debugging failures (i.e. to distinguish unmodified registers
from mistakenly written zeroes), the former makes it possible to test
whether xstate_bv field is written correctly when using XSAVE.
With this change, the four relevant tests start failing on NetBSD
without D90105.
Differential Revision: https://reviews.llvm.org/D90114
Unify the x86 regset API to use XStateRegSet for all FPU registers,
therefore eliminating the legacy API based on FPRegSet. This makes
the code a little bit simpler but most notably, it provides future
compatibility for register caching.
Since the NetBSD kernel takes care of providing compatibility with
pre-XSAVE processors, PT_{G,S}ETXSTATE can be used on systems supporting
only FXSAVE or even plain FSAVE (and unlike PT_{G,S}ETXMMREGS, it
clearly indicates that XMM registers are not supported).
Differential Revision: https://reviews.llvm.org/D90034
As mentioned in the comment inside the code, the Intel documentation
states that the internal CPU buffer is flushed out to RAM only when tracing is
disabled. Otherwise, the buffer on RAM might be stale.
This diff disables tracing when the trace buffer is going to be read. This is a
quite safe operation, as the reading is done when the inferior is paused at a
breakpoint, so we are not losing any packets because there's no code being
executed.
After the reading is finished, tracing is enabled back.
It's a bit hard to write a test for this now, but Greg Clayton and I will
refactor the PT support and writing tests for it will be easier. However
I tested it manually by doing a script that automates
the following flow
```
(lldb) b main
Breakpoint 1: where = a.out`main + 15 at main.cpp:4:7, address = 0x000000000040050f
(lldb) r
Process 3078226 stopped
* thread #1, name = 'a.out', stop reason = breakpoint 1.1
frame #0: 0x000000000040050f a.out`main at main.cpp:4:7
(lldb) processor-trace start
(lldb) b 5
Breakpoint 2: where = a.out`main + 22 at main.cpp:5:12, address = 0x0000000000400516
(lldb) c
Process 3078226 resuming
Process 3078226 stopped
* thread #1, name = 'a.out', stop reason = breakpoint 2.1
frame #0: 0x0000000000400516 a.out`main at main.cpp:5:12
(lldb) processor-trace show-instr-log
thread #1: tid=3078226
0x40050f <+15>: movl $0x0, -0x8(%rbp)
>>> Before, some runs of the script up to this point lead to empty traces
(lldb) b 6
Breakpoint 3: where = a.out`main + 42 at main.cpp:6:14, address = 0x000000000040052a
(lldb) c
Process 3092991 resuming
Process 3092991 stopped
* thread #1, name = 'a.out', stop reason = breakpoint 3.1
frame #0: 0x000000000040052a a.out`main at main.cpp:6:14
(lldb) processor-trace show-instr-log thread #1: tid=3092991
0x40050f <+15>: movl $0x0, -0x8(%rbp)
0x400516 <+22>: movl $0x0, -0xc(%rbp)
0x40051d <+29>: cmpl $0x2710, -0xc(%rbp) ; imm = 0x2710
0x400524 <+36>: jge 0x400546 ; <+70> at main.cpp
0x400524 <+36>: jge 0x400546 ; <+70> at main.cpp
>>> The trace was re-enabled correctly and includes the instruction of the
first reading.
```
Those instructions correspond to these lines
```
3 int main() {
4 int z = 0;
5 for (int i = 0; i < 10000; i++) {
6 z += fun(z)
...
```
Differential Revision: https://reviews.llvm.org/D85241
For performance reasons the reproducers don't copy the files captured by
the file collector eagerly, but wait until the reproducer needs to be
generated.
This is a problematic when LLDB crashes and we have to do all this
signal-unsafe work in the signal handler. This patch uses a similar
trick to clang, which has the driver invoke a new cc1 instance to do all
this work out-of-process.
This patch moves the writing of the mapping file as well as copying over
the reproducers into a separate process spawned when lldb crashes.
Differential revision: https://reviews.llvm.org/D89600
We were returning the default constructed unique_pointer from
TypeSystem.h for which the compiler does not have a definition. Move the
implementation into the cpp file.
This patch redesigns the Target::GetUtilityFunctionForLanguage API:
- Use a unique_ptr instead of a raw pointer for the return type.
- Wrap the result in an llvm::Expected instead of using a Status object as an I/O parameter.
- Combine the action of "getting" and "installing" the UtilityFunction as they always get called together.
- Pass std::strings instead of const char* and std::move them where appropriate.
There's more room for improvement but I think this tackles the most
prevalent issues with the current API.
Differential revision: https://reviews.llvm.org/D90011
Split the current NetBSD watchpoint implementation for x86 into Utility,
and revamp it to improve readability. This code is meant to be used
as a common class for all x86 watchpoint implementation, particularly
these on FreeBSD and Linux.
The code uses global watchpoint enable bits, as required by the NetBSD
kernel. If it ever becomes necessary for any platform to use local
enable bits instead, this can be trivially abstracted out.
The code also postpones clearing DR6 until a new different watchpoint
is being set in place of the old one. This is necessary since LLDB
repeatedly reenables watchpoints on all threads, by clearing
and restoring them. When DR6 is cleared as a part of that, then pending
events on other threads can no longer be associated with watchpoints
correctly.
Differential Revision: https://reviews.llvm.org/D89874
The UtilityFunction ctor was dropping the text argument. Probably for
that reason ClangUtilityFunction was setting the parent's member
directly instead of deferring to the parent ctor. Also change the
signatures to take strings which are std::moved in place.
This patch completes https://reviews.llvm.org/D83560. Now that the
compiler can emit `DW_OP_implicit_value` into DWARF expressions, lldb
needed to learn reading these opcodes for variable inspection and
expression evaluation.
This implicit location descriptor specifies an immediate value with two
operands: the length (ULEB128) followed by a block representing the value
in the target memory representation.
rdar://67406091
Differential revision: https://reviews.llvm.org/D89842
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In a new Range class was introduced to simplify and the Disassembler API
and reduce duplication. It unintentionally broke the
SBFrame::Disassemble functionality because it unconditionally converts
the number of instructions to a Range{Limit::Instructions,
num_instructions}. This is subtly different from the previous behavior,
where now we're passing a Range and assume it's valid in the callee, the
original code would propagate num_instructions and the callee would
compare the value and decided between disassembling instructions or
bytes.
Unfortunately the existing tests was not particularly strict:
disassembly = frame.Disassemble()
self.assertNotEqual(len(disassembly), 0, "Disassembly was empty.")
This would pass because without this patch we'd disassemble zero
instructions, resulting in an error:
(lldb) script print(lldb.frame.Disassemble())
error: error reading data from section __text
Differential revision: https://reviews.llvm.org/D89925
This test checks that the output of `SBTarget.GetDescription()` contains the
substrings `'a.out', 'Target', 'Module', 'Breakpoint'` in that order. This test
is currently failing on Apple simulators as apparently 'Module' can't be found
in the output after 'Target".
The reason for that is that the actual output of `SBTarget.GetDescription()` looks like this:
```
Target
Module /build/path/lldb-test-build.noindex/python_api/target/TestTargetAPI.test_get_description_dwarf/a.out
0x7ff2b6d3f990: ObjectFileMachO64, file = /build/path/lldb-test-build.noindex/python_api/target/TestTargetAPI.test_get_description
[...]
0x7ff307150000: BreakpointList with 0 Breakpoints:
<LLDB module output repeats for each loaded module>
```
Clearly the string order should be `'Target', 'Module', 'a.out', 'Breakpoint'`.
However, LLDB is also a bunch of system shared libraries (libxpc.dylib,
libobjc.A.dylib, etc.) when *not* running against a simulator, we end up
unintentionally finding the `'Target', 'Module', 'Breakpoint'` substrings in the
trailing descriptions of the system modules. When running against a simulator we
however don't load shared system libraries.
This patch just moves the substrings in the correct order to make this test pass
without having any shared library modules in the description output.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D89698
The Darwin builder currently assumes in `getArchCFlags` that the passed `arch`
value is an actual string it can string.join with vendor/os/version/env strings:
```
triple = '-'.join([arch, vendor, os, version, env])
```
However this is not true for most tests as we just pass down the `arch=None`
default value from `TestBase.build`. This causes that if we actually end up in
this function we just error out when concatenating `None` with the other actual
strings of vendor/os/version/env. What we should do instead is check that if
there is no test-specific architecture that we fall back to the configuration's
architecture value.
It seems we already worked around this in `builder.getArchSpec` by explicitly
falling back to the architecture specified in the configuration.
This patch just moves this fallback logic to the top `build` function so that it
affects all functions called from `TestBase.build`.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D89056
The existing help text was very terse and was missing several important
options. In the new version, I add a short description of each option
and a slightly longer description of the tool as a whole.
The new option list does not include undocumented no-op options:
--debug and --verbose. It also does not include undocumented short
aliases for long options, with two exceptions: -h, because it's
well-known; and -S (--setsid), as it's used in one test. Using these
options will now produce an error. I believe that is acceptable as users
aren't generally invoking lldb-server directly, and the only way to
learn about the short aliases was by looking at the source.
Differential Revision: https://reviews.llvm.org/D89477
In a discussion with Jim last week we came to the realization that often
we get asked about things that might not be documented on the website,
but that have been pretty well explained elsewhere. In those situations
it's often easier to quickly answer the question than searching for that
presentation you gave 3 years ago if you remember at all.
This often results in us having to answer the same questions over and
over again. We could add the questions and their answer to the website,
but that means we (1) have to duplicate the work and (2) now have to
maintain it.
A more efficient solution is to add a page with external resources with
the caveat that they might be outdated. That's exactly the purpose of
this patch.
I've added a few links that came to mind, but I don't want to be the
arbiter of what should and should not be included. I'd hope that over
time the community can crowd-source the best resources.
Differential revision: https://reviews.llvm.org/D89215
Add a nul byte to the stream in CommunicationKDP::CheckForPacket
before we send the GetData() to a Log::Printf as a c-str. Avoids
a crash when logging kdp communications and memory layout isn't
in your favor.
Renamed ThreadIntelPT to TreaceThread, making it a top-level class. I noticed that this class can and shuld work for any trace plugin and there's nothing intel-pt specific in it.
With that TraceThread change, I was able to move most of the json file parsing logic to the base class TraceSessionFileParser, which makes adding new plug-ins easier.
This originally was part of https://reviews.llvm.org/D89283
Differential Revision: https://reviews.llvm.org/D89408
LookupAddress makes no sense for DWARFTypeUnit.
Also make GetNonSkeletonUnit to preserve the called type.
Differential Revision: https://reviews.llvm.org/D89646
There were invalid DIE references which nobody used. If LLDB starts to
report invalid DIE references it would lock up (mutex lock).
These invalid DIE references are there since initial check-in by:
https://reviews.llvm.org/D83302