When creating a call to storeStrong in ObjCARCContract, ensure the call
gets the correct funclet token, otherwise WinEHPrepare will turn the
call (and all subsequent instructions) into unreachable.
We already have logic to do this for the ARC autorelease elision marker;
factor that out into a common function that's used for both. These are
the only two places in this transform that create call instructions.
Differential Revision: https://reviews.llvm.org/D45857
llvm-svn: 330487
The inline assembly generated for the ARC autorelease elision marker
must have a funclet token if it's emitted inside a funclet, otherwise
the inline assembly (and all subsequent code in the funclet) will be
marked unreachable by WinEHPrepare.
Note that this only applies for the non-O0 case, since at O0, clang
emits the autorelease elision marker itself rather than deferring to the
backend. The fix for clang is handled in a separate change.
Differential Revision: https://reviews.llvm.org/D44641
llvm-svn: 328042
In the case that the CallInst that is being moved has an associated
operand bundle which is a funclet, the move will construct an invalid
instruction. The new site will have a different token and needs to be
reassociated with the new instruction.
Unfortunately, there is no way to alter the bundle after the
construction of the instruction. Replace the call instruction cloning
with a custom helper to clone the instruction and reassociate the
funclet token.
llvm-svn: 327336
to @objc_autorelease if its operand is a PHI and the PHI has an
equivalent value that is used by a return instruction.
For example, ARC optimizer shouldn't replace the call in the following
example, as doing so breaks the AutoreleaseRV/RetainRV optimization:
%v1 = bitcast i32* %v0 to i8*
br label %bb3
bb2:
%v3 = bitcast i32* %v2 to i8*
br label %bb3
bb3:
%p = phi i8* [ %v1, %bb1 ], [ %v3, %bb2 ]
%retval = phi i32* [ %v0, %bb1 ], [ %v2, %bb2 ] ; equivalent to %p
%v4 = tail call i8* @objc_autoreleaseReturnValue(i8* %p)
ret i32* %retval
Also, make sure ObjCARCContract replaces @objc_autoreleaseReturnValue's
operand uses with its value so that the call gets tail-called.
rdar://problem/15894705
llvm-svn: 323009
The `BasicBlock::getFirstInsertionPt` call may return `std::end` for the
BB. Dereferencing the end iterator results in an assertion failure
"(!NodePtr->isKnownSentinel()), function operator*". Ensure that the
returned iterator is valid before dereferencing it. If the end is
returned, move one position backward to get a valid insertion point.
llvm-svn: 316401
above PHI instructions.
ARC optimizer has an optimization that moves a call to an ObjC runtime
function above a phi instruction when the phi has a null operand and is
an argument passed to the function call. This optimization should not
kick in when the runtime function is an objc_release that releases an
object with precise lifetime semantics.
rdar://problem/34959669
llvm-svn: 315914
The BasicBlock passed to FindPredecessorRetainWithSafePath should be the
parent block of Autorelease. This fixes a crash that occurs in
FindDependencies when StartInst is not in StartBB.
rdar://problem/33866381
llvm-svn: 312266
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
retainAutoreleasedReturnValue that retains the returned value.
This commit fixes a bug in ARC optimizer where it moves a release
between a call and a retainAutoreleasedReturnValue, causing the returned
object to be released before the retainAutoreleasedReturnValue can
retain it.
This commit accomplishes that by doing a lookahead and checking whether
the call prevents the release from moving upwards. In the long term, we
should treat the region between the retainAutoreleasedReturnValue and
the call as a critical section and disallow moving anything there
(possibly using operand bundles).
rdar://problem/20449878
llvm-svn: 301724
We need to do this to prevent a miscompile which sinks an objc_retain
past an objc_release that releases the object objc_retain retains. This
happens because the top-down and bottom-up traversals each determines
the insert point for retain or release individually without knowing
where the other instruction is moved.
For example, when the following IR is fed to the ARC optimizer, the
top-down traversal decides to insert objc_retain right before
objc_release and the bottom-up traversal decides to insert objc_release
right after clang.arc.use.
(IR before ARC optimizer)
%11 = call i8* @objc_retain(i8* %10)
call void (...) @clang.arc.use(%0* %5)
call void @llvm.dbg.value(...)
call void @objc_release(i8* %6)
This reverses the order of objc_release and objc_retain, which causes
the object to be destructed prematurely.
(IR after ARC optimizer)
call void (...) @clang.arc.use(%0* %5)
call void @objc_release(i8* %6)
call void @llvm.dbg.value(...)
%11 = call i8* @objc_retain(i8* %10)
rdar://problem/30530580
llvm-svn: 301289
Fix a bug in ARC contract pass where an iterator that pointed to a
deleted instruction was dereferenced.
It appears that tryToContractReleaseIntoStoreStrong was incorrectly
assuming that a call to objc_retain would not immediately follow a call
to objc_release.
rdar://problem/25276306
llvm-svn: 299507
ObjC library call with call return.
ARC contraction tries to replace uses of an argument passed to an
objective-c library call with the call return value. For example, in the
following IR, it replaces uses of argument %9 and uses of the values
discovered traversing the chain upwards (%7 and %8) with the call return
%10, if they are dominated by the call to @objc_autoreleaseReturnValue.
This transformation enables code-gen to tail-call the call to
@objc_autoreleaseReturnValue, which is necessary to enable auto release
return value optimization.
%7 = tail call i8* @objc_loadWeakRetained(i8** %6)
%8 = bitcast i8* %7 to %0*
%9 = bitcast %0* %8 to i8*
%10 = tail call i8* @objc_autoreleaseReturnValue(i8* %9)
ret %0* %8
Since r276727, llvm started removing redundant bitcasts and as a result
started feeding the following IR to ARC contraction:
%7 = tail call i8* @objc_loadWeakRetained(i8** %6)
%8 = bitcast i8* %7 to %0*
%9 = tail call i8* @objc_autoreleaseReturnValue(i8* %7)
ret %0* %8
ARC contraction no longer does the optimization described above since it
only traverses the chain upwards and fails to recognize that the
function return can be replaced by the call return. This commit changes
ARC contraction to traverse the chain downwards too and replace uses of
bitcasts with the call return.
rdar://problem/28011339
Differential Revision: https://reviews.llvm.org/D24523
llvm-svn: 281419
objc_storeStrong can be formed from a sequence such as
%0 = tail call i8* @objc_retain(i8* %p) nounwind
%tmp = load i8*, i8** @x, align 8
store i8* %0, i8** @x, align 8
tail call void @objc_release(i8* %tmp) nounwind
The code was already looking through bitcasts for most of the values
involved, but had missed one case where the pointer operand for the
store was a bitcast. Ultimately the pointer for the load and store
have to be the same value, after stripping casts.
llvm-svn: 270955
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Summary:
Fixes PR26774.
If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".
Motivation:
I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard. So transforming:
```
void f(unsigned x) {
unsigned t = 5 / x;
(void)t;
}
```
to
```
void f(unsigned x) { }
```
is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).
Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM. For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).
Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have. This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.
For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store. As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal. The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal. Such a
refined variant will look like it is `readonly`. However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.
Note: this is not just a problem with atomics or with linking
differently optimized object files. See PR26774 for more realistic
examples that involved neither.
This patch:
This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time. It then changes a set of IPO passes to bail out if they see
such a function.
Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18634
llvm-svn: 265762
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
When support for objc_unsafeClaimAutoreleasedReturnValue has been added to the
ARC optimizer in r258970, one case was missed which would lead the optimizer
to execute an llvm_unreachable. In this case, just handle ClaimRV in the same
way we handle RetainRV.
llvm-svn: 261134
ObjC ARC Optimizer.
The main implication of this is:
1. Ensuring that we treat it conservatively in terms of optimization.
2. We put the ASM marker on it so that the runtime can recognize
objc_unsafeClaimAutoreleasedReturnValue from releaseRV.
<rdar://problem/21567064>
Patch by Michael Gottesman!
llvm-svn: 258970
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Same as r235145 for the call instruction - the justification, tradeoffs,
etc are all the same. The conversion script worked the same without any
false negatives (after replacing 'call' with 'invoke').
llvm-svn: 235755
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Add missing `!dbg` attachments to `@llvm.dbg.*` intrinsics. I updated
these using a script (add-dbg-to-intrinsics.sh) that I'll attach to
PR22778 for posterity.
llvm-svn: 235040
Fix testcases that don't pass the verifier after a WIP patch to check
`MDSubprogram` operands more effectively. I found the following issues:
- When `isDefinition: false`, the `variables:` field might point at
`!{i32 786468}`, or at a tuple that pointed at an empty tuple with
the comment "previously: invalid DW_TAG_base_type" (I vaguely recall
adding those comments during an upgrade script). In these cases, I
just dropped the array.
- The `variables:` field might point at something like `!{!{!8}}`,
where `!8` was an `MDLocation`. I removed the extra layer of
indirection.
- Invalid `type:` (not an `MDSubroutineType`).
llvm-svn: 233466
Change `llc` and `opt` to run `verifyModule()`. This ensures that we
check the full module before `FunctionPass::doInitialization()` ever
gets called (I was getting crashes in `DwarfDebug` instead of verifier
failures when testing a WIP patch that checks operands of compile
units). In `opt`, also move up debug-info-stripping so that it still
runs before verification.
There was a fair bit of broken code that was sitting in tree.
Interestingly, some were cases of a `select` that referred to itself in
`-instcombine` tests (apparently an intermediate result). I split them
off to `*-noverify.ll` tests with RUN lines like this:
opt < %s -S -disable-verify -instcombine | opt -S | FileCheck %s
This avoids verifying the input file (so we can get the broken code into
`-instcombine), but still verifies the output with a second call to
`opt` (to verify that `-instcombine` will clean it up like it should).
llvm-svn: 233432
Fix debug info in these tests, which started failing with a WIP patch to
verify compile units and types. The problems look like they were all
caused by bitrot. They fell into these categories:
- Using `!{i32 0}` instead of `!{}`.
- Using `!{null}` instead of `!{}`.
- Using `!MDExpression()` instead of `!{}`.
- Using `!8` instead of `!{!8}`.
- `file:` references that pointed at `MDCompileUnit`s instead of the
same `MDFile` as the compile unit.
- `file:` references that were numerically off-by-one or (off-by-ten).
llvm-svn: 233415
Fix testcases whose variables are invalid. I'm working on a patch that
adds `Verifier` checks for `MDLocalVariable` (and `MDGlobalVariable`),
and these failed because:
- `scope:` fields need to point at `MDLocalScope` and can't be null.
- `file:` fields need to point at `MDFile`.
- `inlinedAt:` fields need to point at `MDLocation`.
llvm-svn: 233349
The problem here is the infamous one direction known safe. I was
hesitant to turn it off before b/c of the potential for regressions
without an actual bug from users hitting the problem. This is that bug ;
).
The main performance impact of having known safe in both directions is
that often times it is very difficult to find two releases without a use
in-between them since we are so conservative with determining potential
uses. The one direction known safe gets around that problem by taking
advantage of many situations where we have two retains in a row,
allowing us to avoid that problem. That being said, the one direction
known safe is unsafe. Consider the following situation:
retain(x)
retain(x)
call(x)
call(x)
release(x)
Then we know the following about the reference count of x:
// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
retain(x)
// rc(x) == N+2
call A(x)
call B(x)
// rc(x) >= 1 (since we can not release a deallocated pointer).
release(x)
// rc(x) >= 0
That is all the information that we can know statically. That means that
we know that A(x), B(x) together can release (x) at most N+1 times. Lets
say that we remove the inner retain, release pair.
// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
call A(x)
call B(x)
// rc(x) >= 1
release(x)
// rc(x) >= 0
We knew before that A(x), B(x) could release x up to N+1 times meaning
that rc(x) may be zero at the release(x). That is not safe. On the other
hand, consider the following situation where we have a must use of
release(x) that x must be kept alive for after the release(x)**. Then we
know that:
// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
retain(x)
// rc(x) == N+2
call A(x)
call B(x)
// rc(x) >= 2 (since we know that we are going to release x and that that release can not be the last use of x).
release(x)
// rc(x) >= 1 (since we can not deallocate the pointer since we have a must use after x).
…
// rc(x) >= 1
use(x)
Thus we know that statically the calls to A(x), B(x) can together only
release rc(x) N times. Thus if we remove the inner retain, release pair:
// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
call A(x)
call B(x)
// rc(x) >= 1
…
// rc(x) >= 1
use(x)
We are still safe unless in the final … there are unbalanced retains,
releases which would have caused the program to blow up anyways even
before optimization occurred. The simplest form of must use is an
additional release that has not been paired up with any retain (if we
had paired the release with a retain and removed it we would not have
the additional use). This fits nicely into the ARC framework since
basically what you do is say that given any nested releases regardless
of what is in between, the inner release is known safe. This enables us to get
back the lost performance.
<rdar://problem/19023795>
llvm-svn: 232351
Verify that debug info intrinsic arguments are valid. (These checks
will not recurse through the full debug info graph, so they don't need
to be cordoned of in `DebugInfoVerifier`.)
With those checks in place, changing the `DbgIntrinsicInst` accessors to
downcast to `MDLocalVariable` and `MDExpression` is natural (added isa
specializations in `Metadata.h` to support this).
Added tests to `test/Verifier` for the new -verify checks, and fixed the
debug info in all the in-tree tests.
If you have out-of-tree testcases that have started to fail to -verify,
hopefully the verify checks are helpful. The most likely problem is
that the expression argument is `!{}` (instead of `!MDExpression()`).
llvm-svn: 232296
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
llvm-svn: 231082
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
This adds back r222061, but now calls initializePAEvalPass from the correct
library to avoid link problems.
Original message:
Don't make assumptions about the name of private global variables.
Private variables are can be renamed, so it is not reliable to make
decisions on the name.
The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).
This patch changes one case where we were looking at the variable name to use
the section instead.
Test tuning by Michael Gottesman.
llvm-svn: 222117
Private variables are can be renamed, so it is not reliable to make
decisions on the name.
The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).
This patch changes one case where we were looking at the variable name to use
the section instead.
Test tuning by Michael Gottesman.
llvm-svn: 222061
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
The use_iterator redesign in r203364 introduced an increment past the
end of a range in -objc-arc-contract. Added an explicit check for the
end of the range.
<rdar://problem/16333235>
llvm-svn: 204195
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
cycles
This allows the value equality check to work even if we don't have a dominator
tree. Also add some more comments.
I was worried about compile time impacts and did not implement reachability but
used the dominance check in the initial patch. The trade-off was that the
dominator tree was required.
The llvm utility function isPotentiallyReachable cuts off the recursive search
after 32 visits. Testing did not show any compile time regressions showing my
worries unjustfied.
No compile time or performance regressions at O3 -flto -mavx on test-suite +
externals.
Addresses review comments from r198290.
llvm-svn: 198400
When there are cycles in the value graph we have to be careful interpreting
"Value*" identity as "value" equivalence. We interpret the value of a phi node
as the value of its operands.
When we check for value equivalence now we make sure that the "Value*" dominates
all cycles (phis).
%0 = phi [%noaliasval, %addr2]
%l = load %ptr
%addr1 = gep @a, 0, %l
%addr2 = gep @a, 0, (%l + 1)
store %ptr ...
Before this patch we would return NoAlias for (%0, %addr1) which is wrong
because the value of the load is from different iterations of the loop.
Tested on x86_64 -mavx at O3 and O3 -flto with no performance or compile time
regressions.
PR18068
radar://15653794
llvm-svn: 198290
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
Make tests more robust by removing hard-coded metadata numbers in CHECK lines.
llvm-svn: 195535
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
Due to the previously added overflow checks, we can have a retain/release
relation that is one directional. This occurs specifically when we run into an
additive overflow causing us to drop state in only one direction. If that
occurs, we should bail and not optimize that retain/release instead of
asserting.
Apologies for the size of the testcase. It is necessary to cause the additive
cfg overflow to trigger.
rdar://15377890
llvm-svn: 194083
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
llvm-svn: 190205
The reason that I am turning off this optimization is that there is an
additional case where a block can escape that has come up. Specifically, this
occurs when a block is used in a scope outside of its current scope.
This can cause a captured retainable object pointer whose life is preserved by
the objc_retainBlock to be deallocated before the block is invoked.
An example of the code needed to trigger the bug is:
----
\#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
void (^somethingToDoLater)();
{
NSObject *obj = [NSObject new];
somethingToDoLater = ^{
[obj self]; // Crashes here
};
}
NSLog(@"test.");
somethingToDoLater();
return 0;
}
----
In the next commit, I remove all the dead code that results from this.
Once I put in the fixing commit I will bring back the tests that I deleted in
this commit.
rdar://14802782.
rdar://14868830.
llvm-svn: 189869
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
I fixed the aforementioned problems that came up on some of the linux boxes.
Major thanks to Nick Lewycky for his help debugging!
rdar://14590914
llvm-svn: 188122
This reverts commit r187941.
The commit was passing on my os x box, but it is failing on some non-osx
platforms. I do not have time to look into it now, so I am reverting and will
recommit after I figure this out.
llvm-svn: 187946
This conversion was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)define\([^@]*\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3define\4@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186269
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
In the presense of a block being initialized, the frontend will emit the
objc_retain on the original pointer and the release on the pointer loaded from
the alloca. The optimizer will through the provenance analysis realize that the
two are related (albiet different), but since we only require KnownSafe in one
direction, will match the inner retain on the original pointer with the guard
release on the original pointer. This is fixed by ensuring that in the presense
of allocas we only unconditionally remove pointers if both our retain and our
release are KnownSafe (i.e. we are KnownSafe in both directions) since we must
deal with the possibility that the frontend will emit what (to the optimizer)
appears to be unbalanced retain/releases.
An example of the miscompile is:
%A = alloca
retain(%x)
retain(%x) <--- Inner Retain
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
release(%x) <--- Guarding Release
getting optimized to:
%A = alloca
retain(%x)
store %x, %A
%y = load %A
... DO STUFF ...
release(%y)
call void @use(%x)
rdar://13750319
llvm-svn: 181743
Turning retains into retainRV calls disrupts the data flow analysis in
ObjCARCOpts. Thus we move it as late as we can by moving it into
ObjCARCContract.
We leave in the conversion from retainRV -> retain in ObjCARCOpt since
it enables the dataflow analysis.
rdar://10813093
llvm-svn: 180698
Mainly adding paranoid checks for the closing brace of a function to
help with FileCheck error readability. Also some other minor changes.
No actual CHECK changes.
llvm-svn: 180668
Specifically:
1. Added checks that unwind is being properly added to various instructions.
2. Fixed the declaration/calling of objc_release to have a return type of void.
3. Moved all checks to precede the functions and added checks to ensure that the
checks would only match inside the specific function that we are attempting to
check.
llvm-svn: 179973
This occurs due to an alloca representing a separate ownership from the
original pointer. Thus consider the following pseudo-IR:
objc_retain(%a)
for (...) {
objc_retain(%a)
%block <- %a
F(%block)
objc_release(%block)
}
objc_release(%a)
From the perspective of the optimizer, the %block is a separate
provenance from the original %a. Thus the optimizer pairs up the inner
retain for %a and the outer release from %a, resulting in segfaults.
This is fixed by noting that the signature of a mismatch of
retain/releases inside the for loop is a Use/CanRelease top down with an
None bottom up (since bottom up the Retain-CanRelease-Use-Release
sequence is completed by the inner objc_retain, but top down due to the
differing provenance from the objc_release said sequence is not
completed). In said case in CheckForCFGHazards, we now clear the state
of %a implying that no pairing will occur.
Additionally a test case is included.
rdar://12969722
llvm-svn: 179747
The normal dataflow sequence in the ARC optimizer consists of the following
states:
Retain -> CanRelease -> Use -> Release
The optimizer before this patch stored the uses that determine the lifetime of
the retainable object pointer when it bottom up hits a retain or when top down
it hits a release. This is correct for an imprecise lifetime scenario since what
we are trying to do is remove retains/releases while making sure that no
``CanRelease'' (which is usually a call) deallocates the given pointer before we
get to the ``Use'' (since that would cause a segfault).
If we are considering the precise lifetime scenario though, this is not
correct. In such a situation, we *DO* care about the previous sequence, but
additionally, we wish to track the uses resulting from the following incomplete
sequences:
Retain -> CanRelease -> Release (TopDown)
Retain <- Use <- Release (BottomUp)
*NOTE* This patch looks large but the most of it consists of updating
test cases. Additionally this fix exposed an additional bug. I removed
the test case that expressed said bug and will recommit it with the fix
in a little bit.
llvm-svn: 178921
The semantics of ARC implies that a pointer passed into an objc_autorelease
must live until some point (potentially down the stack) where an
autorelease pool is popped. On the other hand, an
objc_autoreleaseReturnValue just signifies that the object must live
until the end of the given function at least.
Thus objc_autorelease is stronger than objc_autoreleaseReturnValue in
terms of the semantics of ARC* implying that performing the given
strength reduction without any knowledge of how this relates to
the autorelease pool pop that is further up the stack violates the
semantics of ARC.
*Even though objc_autoreleaseReturnValue if you know that no RV
optimization will occur is more computationally expensive.
llvm-svn: 178612