include altivec.h has come and gone.
Rationale: This causes modules, rewrite-includes, etc to be sad and
people should just include altivec.h in their source.
llvm-svn: 264235
The stack-size.yaml test had an empty atom content array. This is
legal, but asking a BumpPtrAllocator for 0 sized data may not be
legal. Instead just avoid requesting any data when we can just return
an empty ArrayRef instead.
llvm-svn: 264234
Its possible for file to have no entry atom which means that there
is no atom to check for being a thumb function. Instead just skip
the thumb check and set the entry address to 0, which matches the
current behaviour of getting a default initialised int from a map.
llvm-svn: 264233
On a 32-bit output, we may write LC_MAIN (which contains a uint64_t) to
an unaligned address. This changes it to use a memcpy instead which is UB safe.
llvm-svn: 264232
We were casting a potentially unaligned pointer to uint32_t and
dereferencing. As the pointer ultimately comes from the object file,
there's no way to guarantee alignment, so use the little32_t read instead.
Also, little32_t knows about endianness, so in theory this may have broken on
big endian machines.
llvm-svn: 264231
The .o path always makes sure to store a power of 2 value in the
Section alignment. However, the YAML code didn't verify this.
Added verification and updated all the tests which had a 3 but meant
to have 2^3.
llvm-svn: 264228
We need the "return address" of a noreturn call to be within the
bounds of the calling function; TrapUnreachable turns 'unreachable'
into a 'ud2' instruction, which has that desired effect.
Differential Revision: http://reviews.llvm.org/D18414
llvm-svn: 264224
If not for lazy linking of linkonce GVs, comdats are just a
preprocessing before symbol resolution.
Lazy linking complicates it since when we pick a visible member of
comdat, we have to make sure the rest of it passes symbol resolution
too.
llvm-svn: 264223
This is a temporary crutch to enable code that currently uses std::error_code
to be incrementally moved over to Error. Requiring all Error instances be
convertible enables clients to call errorToErrorCode on any error (not just
ECErrors created by conversion *from* an error_code).
This patch also moves code for Error from ErrorHandling.cpp into a new
Error.cpp file.
llvm-svn: 264221
Summary:
Though r264012 was fancy enough to make reading the jit entry struct
work with templates, the packing and alignment attributes do not work on
Windows. So, this change makes it plain and simple with manual reading
of the jit entry struct.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18379
llvm-svn: 264217
Patch by Michal Cierniak!
This patch increments the "Debug Info Version" from 2 to 3.
This is a nop if you just want to generate binaries. I verified
that with and without this patch, when I run llgo -g on a Go
source file, I get exactly the same binary. The purpose of the
patch is to make it possible to run the llvm-dis tool. Without
the patch, it is impossible to disassemble files generated with
llgo:
$ llgo -c -g -emit-llvm src/hello.go
$ llvm-dis hello.o
llvm-dis: warning: ignoring debug info with an invalid version (2) in hello.o
Differential Revision: http://reviews.llvm.org/D18355
llvm-svn: 264212
Remove tests that have neither a triple nor an explicit -fmsc-version flag,
since in the absence of an -fmsc-version flag, the implicit value of the flag
is 17 (MSVC2013) with MSVC triples but 0 (not set) for other triples, and
the default triple is platform dependent.
This relands r263974 with a test fix.
llvm-svn: 264210
Summary:
Previously we were using the codegen test to ensure that we choose the
right overload. But we can do this within sema, with a bit of
cleverness.
I left the constructor/destructor checks in CodeGen, because these
overloads (particularly on the destructors) are hard to check in Sema.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18386
llvm-svn: 264207
Summary:
Principally, don't hardcode the line numbers of various notes. This
lets us make changes to the test without recomputing linenos everywhere.
Instead, just tell -verify that we may get 0 or more notes pointing to
the relevant function definitions. Checking that we get exactly the
right note isn't so important (and anyway is checked elsewhere).
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18385
llvm-svn: 264206
Summary:
We decided this makes life too difficult for code authors. For example,
people may want to detect NVCC and disable variadic templates, which
NVCC does not support, but which we do.
Since people are going to have to change compiler flags *anyway* in
order to compile with clang, if they really want the old behavior, they
can pass -D__NVCC__.
Tested with tensorflow and thrust, no apparent problems.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18417
llvm-svn: 264205
The size of a section can be zero, even when it contains atoms, so
long as all of the atoms are also size 0. In this case we were
allocating space for a 0 sized buffer.
Changed this to only allocate when we need the space, but also cleaned
up all the code to use MutableArrayRef instead of uint8_t* so its much much
safer as we get bounds checking on all of our section creation logic.
llvm-svn: 264204
On a 32-bit output, we may write LC_SOURCE_VERSION (which contains a uint64_t) to
an unaligned address. This changes it to use a memcpy instead which is UB safe.
llvm-svn: 264202
The BumpPtrAllocator currently doesn't handle zero length allocations well.
The discussion for how to fix that is ongoing. However, there's no need
for StringRef::copy to actually allocate anything here anyway, so just
return StringRef() when we get a zero length copy.
Reviewed by David Blaikie
llvm-svn: 264201
Strengthen tests of storing frame indices.
Right now this just creates irrelevant scheduling changes.
We don't want to have multiple frame index operands
on an instruction. There seem to be various assumptions
that at least the same frame index will not appear twice
in the LocalStackSlotAllocation pass.
There's no reason to have this happen, and it just
makes it easy to introduce bugs where the immediate
offset is appplied to the storing instruction when it should
really be applied to the value being stored as a separate
add.
This might not be sufficient. It might still be problematic
to have an add fi, fi situation, but that's even less unlikely
to happen in real code.
llvm-svn: 264200
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:
jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...
AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:
jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...
However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.
Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.
In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.
Differential Revision: http://reviews.llvm.org/D11393
llvm-svn: 264199
The goal is to enhance this script to be used with opt and clang:
Group all of the regexes together, so it's easier to see what's going on.
This will make it easier to break main() up into pieces too.
Also, note that some of the regexes are for x86-specific asm.
llvm-svn: 264197
Summary:
Adds strnlen to the common interceptors, under the existing flag
intercept_strlen.
Removes the now-duplicate strnlen interceptor from asan and msan.
This adds strnlen to tsan, which previously did not intercept it.
Adds a new test of strnlen to the sanitizer_common test cases.
Reviewers: samsonov
Subscribers: zhaoqin, llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D18397
llvm-svn: 264195
If a comdat is dropped, all symbols in it are dropped.
If a comdat is kept, the symbols survive to pass regular symbol
resolution.
With this patch we do that for all global symbols.
The added test is a copy of test/tools/gold/X86/comdat.ll that we now
pass.
llvm-svn: 264192
This is necessary to support the dynamic CRT (/MD) with VS2015. In
VS2015, these symbols are no longer imported from a DLL, they provided
statically by msvcrt.lib. This means our approach of hotpatching the DLL
no longer works.
By exporting the symbols, we end up relying on the same mechanism that
we use to intercept symbols in the static CRT (/MT) case. The ASan
runtime always needs to appear first on the link line, and the linker
searches for symbol definitions from left to right. This means we can
stop hotpatching operator new and delete in the CRT, which is nice.
I think that the only reason we weren't exporting the symbols already is
because MSVC doesn't allow you to do it directly with
__declspec(dllexport). Instead, we can use
`#pragma comment(linker, "/export:foo")`, which is most of what the
attribute does under the hood. It does mean we have to write down the
mangled names of the operators, but that's not too bad.
llvm-svn: 264190
in the test suite. While this is not really an interesting tool and option to run
on a Mach-O file to show the symbol table in a generic libObject format
it shouldn’t crash.
The reason for the crash was in MachOObjectFile::getSymbolType() when it was
calling MachOObjectFile::getSymbolSection() without checking its return value
for the error case.
What makes this fix require a fair bit of diffs is that the method getSymbolType() is
in the class ObjectFile defined without an ErrorOr<> so I needed to add that all
the sub classes. And all of the uses needed to be updated and the return value
needed to be checked for the error case.
The MachOObjectFile version of getSymbolType() “can” get an error in trying to
come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol
symbol type is an N_SECT type because the code is trying to select from the
SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type.
And it needs the Mach-O section to use isData() and isBSS to determine if
it will return SymbolRef::ST_Data.
One other possible fix I considered is to simply return SymbolRef::ST_Other
when MachOObjectFile::getSymbolSection() returned an error. But since in
the past when I did such changes that “ate an error in the libObject code” I
was asked instead to push the error out of the libObject code I chose not
to implement the fix this way.
As currently written both the COFF and ELF versions of getSymbolType()
can’t get an error. But if isReservedSectionNumber() wanted to check for
the two known negative values rather than allowing all negative values or
the code wanted to add the same check as in getSymbolAddress() to use
getSection() and check for the error then these versions of getSymbolType()
could return errors.
At the end of the day the error printed now is the generic “Invalid data was
encountered while parsing the file” for object_error::parse_failed. In the
future when we thread Lang’s new TypedError for recoverable error handling
though libObject this will improve. And where the added // Diagnostic(…
comment is, it would be changed to produce and error message
like “bad section index (42) for symbol at index 8” for this case.
llvm-svn: 264187
This should be hoisted further up so it can be used in DAGCombiner and other backends,
but I'm limiting the scope in the interest of patch minimalism.
It's not quite NFC because some of the replaced code was using an 'if' check rather
than a 'while' loop, so those cases would only look through a single bitcast.
llvm-svn: 264186