Summary:
JumpThreading for guards feature has been reverted at https://reviews.llvm.org/rL295200
due to the following problem: the feature used the following algorithm for detection of
diamond patters:
1. Find a block with 2 predecessors;
2. Check that these blocks have a common single parent;
3. Check that the parent's terminator is a branch instruction.
The problem is that these checks are insufficient. They may pass for a non-diamond
construction in case if those two predecessors are actually the same block. This may
happen if parent's terminator is a br (either conditional or unconditional) to a block
that ends with "switch" instruction with exactly two branches going to one block.
This patch re-enables the JumpThreading for guards and fixes this issue by adding the
check that those found predecessors are actually different blocks. This guarantees that
parent's terminator is a conditional branch with exactly 2 different successors, which
is now ensured by assertions. It also adds two more tests for this situation (with parent's
terminator being a conditional and an unconditional branch).
Patch by Max Kazantsev!
Reviewers: anna, sanjoy, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30036
llvm-svn: 295410
Summary:
This patch allows JumpThreading also thread through guards.
Virtually, guard(cond) is equivalent to the following construction:
if (cond) { do something } else {deoptimize}
Yet it is not explicitly converted into IFs before lowering.
This patch enables early threading through guards in simple cases.
Currently it covers the following situation:
if (cond1) {
// code A
} else {
// code B
}
// code C
guard(cond2)
// code D
If there is implication cond1 => cond2 or !cond1 => cond2, we can transform
this construction into the following:
if (cond1) {
// code A
// code C
} else {
// code B
// code C
guard(cond2)
}
// code D
Thus, removing the guard from one of execution branches.
Patch by Max Kazantsev!
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29620
llvm-svn: 294617
Summary: While scanning predecessors to find an available loaded value, if the predecessor has a single predecessor, we can continue scanning through the single predecessor.
Reviewers: mcrosier, rengolin, reames, davidxl, haicheng
Reviewed By: rengolin
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D29200
llvm-svn: 293896
Summary: No need to try to ease BB from LoopHeaders as we already know that BB is not in LoopHeaders.
Reviewers: hsung, majnemer, mcrosier, haicheng, rengolin
Reviewed By: rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29232
llvm-svn: 293802
invalidation of deleted functions in GlobalDCE.
This was always testing a bug really triggered in GlobalDCE. Right now
we have analyses with asserting value handles into IR. As long as those
remain, when *deleting* an IR unit, we cannot wait for the normal
invalidation scheme to kick in even though it was designed to work
correctly in the face of these kinds of deletions. Instead, the pass
needs to directly handle invalidating the analysis results pointing at
that IR unit.
I've tought the Inliner about this and this patch teaches GlobalDCE.
This will handle the asserting VH case in the existing test as well as
other issues of the same fundamental variety. I've moved the test into
the GlobalDCE directory and added a comment explaining what is going on.
Note that we cannot simply require LVI here because LVI is too lazy.
llvm-svn: 292773
Summary:
Unfolding selects was previously done with the help of a vector
of pointers that was then sorted to be able to remove duplicates.
As this sorting depends on the memory addresses, it was
non-deterministic. A SetVector is used now so that duplicates are
removed without the need of sorting first.
Reviewers: mgrang, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26450
llvm-svn: 286807
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: rengolin, haicheng, sebpop
Subscribers: jojo, jmolloy, llvm-commits
Differential Revision: https://reviews.llvm.org/D26391
llvm-svn: 286236
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: reames, bkramer, mcrosier, gberry, haicheng, jmolloy, sebpop
Subscribers: jojo, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D25477
llvm-svn: 284971
Splitting the edge is nontrivial because of the landing pad, and we would
currently assert trying to do it.
Differential Revision: https://reviews.llvm.org/D24680
llvm-svn: 283129
Currently the pass updates branch weights in the IR if the function has
any PGO info (entry frequency is set). However we could still have
regions of the CFG that does not have branch weights collected (e.g. a
cold region). In this case we'd use static estimates. Since static
estimates for branches are determined independently, they are
inconsistent. Updating them can "randomly" inflate block frequencies.
I've run into this in a completely cold loop of h264ref from
SPEC. -Rpass-with-hotness showed the loop to be completely cold during
inlining (before JT) but completely hot during vectorization (after JT).
The new testcase demonstrate the problem. We check array elements
against 1, 2 and 3 in a loop. The check against 3 is the loop-exiting
check. The block names should be self-explanatory.
In this example, jump threading incorrectly updates the weight of the
loop-exiting branch to 0, drastically inflating the frequency of the
loop (in the range of billions).
There is no run-time profile info for edges inside the loop, so branch
probabilities are estimated. These are the resulting branch and block
frequencies for the loop body:
check_1 (16)
(8) / |
eq_1 | (8)
\ |
check_2 (16)
(8) / |
eq_2 | (8)
\ |
check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
First we thread eq_1 -> check_2 to check_3. Frequencies are updated to
remove the frequency of eq_1 from check_2 and then from the false edge
leaving check_2. Changed frequencies are highlighted with * *:
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
\ eq_2 | (*0*)
\ \ |
` --- check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
Next we thread eq_1 -> check_3 and eq_2 -> check_3 to check_1 as new
back edges. Frequencies are updated to remove the frequency of eq_1 and
eq_3 from check_3 and then the false edge leaving check_3 (changed
frequencies are highlighted with * *):
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
/-- eq_2~ | (*0*)
(back edge) |
check_3 (*0*)
(*0*) / |
(loop exit) | (*0*)
|
(back edge)
As a result, the loop exit edge ends up with 0 frequency which in turn makes
the loop header to have maximum frequency.
There are a few potential problems here:
1. The profile data seems odd. There is a single profile sample of the
loop being entered. On the other hand, there are no weights inside the
loop.
2. Based on static estimation we shouldn't set edges to "extreme"
values, i.e. extremely likely or unlikely.
3. We shouldn't create profile metadata that is calculated from static
estimation. I am not sure what policy is but it seems to make sense to
treat profile metadata as something that is known to originate from
profiling. Estimated probabilities should only be reflected in BPI/BFI.
Any one of these would probably fix the immediate problem. I went for 3
because I think it's a good policy to have and added a FIXME about 2.
Differential Revision: https://reviews.llvm.org/D24118
llvm-svn: 280713
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
Summary:
The correctness fix here is that when we CSE a load with another load,
we need to combine the metadata on the two loads. This matches the
behavior of other passes, like instcombine and GVN.
There's also a minor optimization improvement here: for load PRE, the
aliasing metadata on the inserted load should be the same as the
metadata on the original load. Not sure why the old code was throwing
it away.
Issue found by inspection.
Differential Revision: http://reviews.llvm.org/D21460
llvm-svn: 277977
Just because we can constant fold the result of an instruction does not
imply that we can delete the instruction. It may have side effects.
This fixes PR28655.
llvm-svn: 276389
We were still crashing in the "no change" case because LVI was not
getting invalidated.
See the thread "Should analyses be able to hold AssertingVH to IR?
(related to PR28400)" for more discussion.
llvm-svn: 274656
PR28400 seems to be not an isolated issue, but a general problem related
to caching analyses. We will need to discuss on llvm-dev.
A test case is in the PR.
llvm-svn: 274457
r273711 was reverted by r273743. The inliner needs to know about any
call sites in the inlined function. These were obscured if we replaced
a call to undef with an undef but kept the call around.
This fixes PR28298.
llvm-svn: 273753
We should update results of the BranchProbabilityInfo after removing block in JumpThreading. Otherwise
we will get dangling pointer inside BranchProbabilityInfo cache.
Differential Revision: http://reviews.llvm.org/D20957
llvm-svn: 272891
This reverts commit r272603 and adds a fix.
Big thanks to Davide for pointing me at r216244 which gives some insight
into how to fix this VS2013 issue. VS2013 can't synthesize a move
constructor. So the fix here is to add one explicitly to the
JumpThreadingPass class.
llvm-svn: 272607
This follows the approach in r263208 (for GVN) pretty closely:
- move the bulk of the body of the function to the new PM class.
- expose a runImpl method on the new-PM class that takes the IRUnitT and
pointers/references to any analyses and use that to implement the
old-PM class.
- use a private namespace in the header for stuff that used to be file
scope
llvm-svn: 272597
This is a bit gnarly since LVI is maintaining its own cache.
I think this port could be somewhat cleaner, but I'd rather not spend
too much time on it while we still have the old pass hanging around and
limiting how much we can clean things up.
Once the old pass is gone it will be easier (less time spent) to clean
it up anyway.
This is the last dependency needed for porting JumpThreading which I'll
do in a follow-up commit (there's no printer pass for LVI or anything to
test it, so porting a pass that depends on it seems best).
I've been mostly following:
r269370 / D18834 which ported Dependence Analysis
r268601 / D19839 which ported BPI
llvm-svn: 272593
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
This patch improves SimplifyCFG to catch cases like:
if (a < b) {
if (a > b) <- known to be false
unreachable;
}
Phabricator Revision: http://reviews.llvm.org/D18905
llvm-svn: 266767
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264697
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264596
Change a return statement of ComputeValueKnownInPredecessors() to be the same as
the rest return statements of the function. Otherwise, it might return true with
an empty Result when the current basic block has no predecessors and trigger the
first assert of JumpThreading::ProcessThreadableEdges().
llvm-svn: 260110
JumpThreading's runOnFunction is supposed to return true if it made any
changes. JumpThreading has a call to removeUnreachableBlocks which may
result in changes to the IR but runOnFunction didn't appropriate account
for this possibility, leading to badness.
While we are here, make sure to call LazyValueInfo::eraseBlock in
removeUnreachableBlocks; JumpThreading preserves LVI.
This fixes PR26096.
llvm-svn: 257279
Look for PHI/Select in the same BB of the form
bb:
%p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
%s = select p, trueval, falseval
And expand the select into a branch structure. This later enables
jump-threading over bb in this pass.
Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
select if the associated PHI has at least one constant. If the unfolded
select is not jump-threaded, it will be folded again in the later
optimizations.
llvm-svn: 257198
The code that was meant to adjust the duplication cost based on the
terminator opcode was not being executed in cases where the initial
threshold was hit inside the loop.
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D15536
llvm-svn: 256568
This patch removes all weight-related interfaces from BPI and replace
them by probability versions. With this patch, we won't use edge weight
anymore in either IR or MC passes. Edge probabilitiy is a better
representation in terms of CFG update and validation.
Differential revision: http://reviews.llvm.org/D15519
llvm-svn: 256263
Summary:
This change makes the `isImpliedCondition` interface similar to the rest
of the functions in ValueTracking (in that it takes a DataLayout,
AssumptionCache etc.). This is an NFC, intended to make a later diff
less noisy.
Depends on D14369
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14391
llvm-svn: 252333
Summary:
If P branches to Q conditional on C and Q branches to R conditional on
C' and C => C' then the branch conditional on C' can be folded to an
unconditional branch.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13972
llvm-svn: 251557
With r250345 and r250343, we start to observe the following failure
when bootstrap clang with lto and pgo:
PHI node entries do not match predecessors!
%.sroa.029.3.i = phi %"class.llvm::SDNode.13298"* [ null, %30953 ], [ null, %31017 ], [ null, %30998 ], [ null, %_ZN4llvm8dyn_castINS_14ConstantSDNodeENS_7SDValueEEENS_10cast_rettyIT_T0_E8ret_typeERS5_.exit.i.1804 ], [ null, %30975 ], [ null, %30991 ], [ null, %_ZNK4llvm3EVT13getScalarTypeEv.exit.i.1812 ], [ %..sroa.029.0.i, %_ZN4llvm11SmallVectorIiLj8EED1Ev.exit.i.1826 ], !dbg !451895
label %30998
label %_ZNK4llvm3EVTeqES0_.exit19.thread.i
LLVM ERROR: Broken function found, compilation aborted!
I will re-commit this if the bot does not recover.
llvm-svn: 250366
Currently in JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
This is the third attempt to submit this patch, while the first two led to failures in some FDO tests. After investigation, it is the edge weight normalization that caused those failures. In this patch the edge weight normalization is fixed so that there is no zero weight in the output and the sum of all weights can fit in 32-bit integer. Several unit tests are added.
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250345
Currently in JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250204
In JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250089
GlobalsAA must by definition be preserved in function passes, but the passmanager doesn't know that. Make each pass explicitly preserve GlobalsAA.
llvm-svn: 247263
Summary:
JumpThreading shouldn't duplicate a convergent call, because that would move a convergent call into a control-inequivalent location. For example,
if (cond) {
...
} else {
...
}
convergent_call();
if (cond) {
...
} else {
...
}
should not be optimized to
if (cond) {
...
convergent_call();
...
} else {
...
convergent_call();
...
}
Test Plan: test/Transforms/JumpThreading/basic.ll
Patch by Xuetian Weng.
Reviewers: resistor, arsenm, jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12484
llvm-svn: 246415
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
This change was done as an audit and is by inspection. The new EH
system is still very much a work in progress. NFC for the landingpad
case.
llvm-svn: 243965
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This change is hopefully NFC. The only tricky part is that I changed the context instruction being used to the branch rather than the comparison. I believe both to be correct, but the branch is strictly more powerful. With the moved code, using the branch instruction is required for the basic block comparison test to return the same result. The previous code was able to directly access both the branch and the comparison where the revised code is not.
Differential Revision: http://reviews.llvm.org/D9652
llvm-svn: 239797
If we have recognized that a conditional is constant at a particular location in the code (while trying to decide if we can simplify a conditional branch), we can eagerly replace that condition with a constant if it's definition is post dominated by the branch in question.
In practice, this ends up being a compile time savings at most. JumpThreading would have visited each using branch anyways. CVP would have visited the cmp itself again. Unless LVI gives up early, we shouldn't gain any addition power by doing this transformation early. What we do gain is simplicity and compile time.
Differential Revision: http://reviews.llvm.org/D9312
llvm-svn: 236684
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
and updated.
This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.
With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.
llvm-svn: 226459
rather than relying on the pass object.
This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.
llvm-svn: 226396
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.
Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.
llvm-svn: 226157
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
The functions {pred,succ,use,user}_{begin,end} exist, but many users
have to check *_begin() with *_end() by hand to determine if the
BasicBlock or User is empty. Fix this with a standard *_empty(),
demonstrating a few usecases.
llvm-svn: 225760
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.
Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.
To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.
These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.
I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.
llvm-svn: 222739
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.
To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.
These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.
I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.
llvm-svn: 220277
r220178. First, the creation routine doesn't insert prior to the
terminator of the basic block provided, but really at the end of the
basic block. Instead, get the terminator and insert before that. The
next issue was that we need to ensure multiple PHI node entries for
a single predecessor re-use the same cast instruction rather than
creating new ones.
All of the logic here was without tests previously. I've reduced and
added a test case from the test suite that crashed without both of these
fixes.
llvm-svn: 220186
logic to look through pointer casts, making them trivially stronger in
the face of loads and stores with intervening pointer casts.
I've included a few test cases that demonstrate the kind of folding
instcombine can do without pointer casts and then variations which
obfuscate the logic through bitcasts. Without this patch, the variations
all fail to optimize fully.
This is more important now than it has been in the past as I've started
moving the load canonicialization to more closely follow the value type
requirements rather than the pointer type requirements and thus this
needs to be prepared for more pointer casts. When I made the same change
to stores several test cases regressed without logic along these lines
so I wanted to systematically improve matters first.
llvm-svn: 220178
This change teaches LazyValueInfo to use the @llvm.assume intrinsic. Like with
the known-bits change (r217342), this requires feeding a "context" instruction
pointer through many functions. Aside from a little refactoring to reuse the
logic that turns predicates into constant ranges in LVI, the only new code is
that which can 'merge' the range from an assumption into that otherwise
computed. There is also a small addition to JumpThreading so that it can have
LVI use assumptions in the same block as the comparison feeding a conditional
branch.
With this patch, we can now simplify this as expected:
int foo(int a) {
__builtin_assume(a > 5);
if (a > 3) {
bar();
return 1;
}
return 0;
}
llvm-svn: 217345
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
not properly handle the case where the predecessor block was the entry block to
the function. The only in-tree client of this is JumpThreading, which worked
around the issue in its own code. This patch moves the solution into the helper
so that JumpThreading (and other clients) do not have to replicate the same fix
everywhere.
llvm-svn: 212875
This patch add code to remove unreachable blocks from function
as they may cause jump threading to stuck in infinite loop.
Differential Revision: http://reviews.llvm.org/D3991
llvm-svn: 211103
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
The "noduplicate" attribute of call instructions is sometimes queried directly
and sometimes through the cannotDuplicate() predicate. This patch streamlines
all queries to use the cannotDuplicate() predicate. It also adds this predicate
to InvokeInst, to mirror what CallInst has.
llvm-svn: 204049
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
llvm-svn: 202821
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
llvm-svn: 200892
A landing pad can be jumped to only by the unwind edge of an invoke
instruction. If we eliminate a partially redundant load in a landing pad, it
will create a basic block that violates this constraint. It then leads to other
problems down the line if it tries to merge that basic block with the landing
pad. Avoid this by not eliminating the load in a landing pad.
PR17621
llvm-svn: 193064
Adds unit tests for it too.
Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.
llvm-svn: 187283
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
llvm-svn: 162841
GetBestDestForJumpOnUndef() assumes there is at least 1 successor, which isn't
true if the block ends in an indirect branch with no successors. Fix this by
bailing out earlier in this case.
llvm-svn: 160546
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
No tests; these changes aren't really interesting in the sense that the logic is the same for volatile and atomic.
I believe this completes all of the changes necessary for the optimizer to handle loads and stores correctly. I'm going to try and come up with some additional testing, though.
llvm-svn: 139533
I also changed -simplifycfg, -jump-threading and -codegenprepare to use this to produce slightly better code without any extra cleanup passes (AFAICT this was the only place in -simplifycfg where now-dead conditions of replaced terminators weren't being cleaned up). The only other user of this function is -sccp, but I didn't read that thoroughly enough to figure out whether it might be holding pointers to instructions that could be deleted by this.
llvm-svn: 131855
taken (and used!). This prevents merging the blocks (invalidating
the block addresses) in a case like this:
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
void foo() {
printf("%p\n", _THIS_IP_);
printf("%p\n", _THIS_IP_);
printf("%p\n", _THIS_IP_);
}
which fixes PR4151.
llvm-svn: 125829
When it sees a promising select it now tries to figure out whether the condition of the select is known in any of the predecessors and if so it maps the operands appropriately.
llvm-svn: 121859
Should have no functional change other than the order of two transformations that are mutually-exclusive and the exact formatting of debug output.
Internally, it now stores the ConstantInt*s as Constant*s, and actual undef values instead of nulls.
llvm-svn: 120946
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
Because of this, we cannot use the Simplify* APIs, as they can assert-fail on unreachable code. Since it's not easy to determine
if a given threading will cause a block to become unreachable, simply defer simplifying simplification to later InstCombine and/or
DCE passes.
llvm-svn: 115082