Which means "platform process list" should work and list the architecture.
We are now parsing the elf build-id if it exists, which should allow us to load stripped symbols (looking at that next).
llvm-svn: 182610
Most important was a new[] + delete mismatch in ScanFormatDescriptor()
and a couple of possible memory leaks in FileSpec::EnumerateDirectory().
llvm-svn: 181080
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
with directories, without increasing the size of the FileSpec object.
GetPath() returns a std::string of the full pathname of the file.
IsDirectory(), IsPipe(), IsRegularFile(), IsSocket(), and IsSymbolicLink()
can be used instead of getting the FileType() and comparing it to an enum.
Update PlatformDarwinKernel to use these new methods.
llvm-svn: 180704
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
This is a very basic implementation of a library that easily allows to drive LLDB.framework to write test cases for performance
This is separate from the LLDB testsuite in test/ in that:
a) this uses C++ instead of Python to avoid measures being affected by SWIG
b) this is in very early development and needs lots of tweaking before it can be considered functionally complete
c) this is not meant to test correctness but to help catch performance regressions
There is a sample application built against the library (in darwin/sketch) that uses the famous sample app Sketch as an inferior to measure certain basic parameters of LLDB's behavior.
The resulting output is a PLIST much like the following:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<dict>
<key>fetch-frames</key>
<real>0.13161715522222225</real>
</dict>
<dict>
<key>file-line-bkpt</key>
<real>0.029111678750000002</real>
</dict>
<dict>
<key>fetch-modules</key>
<real>0.00026376766666666668</real>
</dict>
<dict>
<key>fetch-vars</key>
<real>0.17820429311111111</real>
</dict>
<dict>
<key>run-expr</key>
<real>0.029676525769230768</real>
</dict>
</array>
</plist>
Areas for improvement:
- code cleanups (I will be out of the office for a couple days this coming week, but please keep ideas coming!)
- more metrics and test cases
- better error checking
This toolkit also comprises a simple event-loop-driven controller for LLDB, similar yet much simpler to what the Driver does to implement the lldb command-line tool.
llvm-svn: 176715
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
- now prints the correct PYTHONPATH
- update dotest.py to use lldb -P result correctly
- resolves TestPublicAPIHeaders test failure (on Linux)
llvm-svn: 171558
Implement the ability for Python commands to be interrupted by pressing CTRL+C
Also add a new Mutex subclass that attempts to be helpful for debugging by logging actions performed on it
FYI of all interested - there is a separate deadlocking issue related to how LLDB dispatches CTRL+C that might cause LLDB to deadlock upon pressing CTRL+C while in a Python command.
This is not a regression, and was just previously masked by us not even trying to bail out of Python commands, so that it would not be clear from a user perspective whether we were
deadlocked or stuck in an inconsistent state within the Python interpreter.
llvm-svn: 170612
equality can be strict or loose and we want code to
explicitly choose one or the other.
Also renamed the Compare function to IsEqualTo, to
avoid confusion.
<rdar://problem/12856749>
llvm-svn: 170152
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
the resolved version of the rhs FileSpec's directory name with the lhs FileSpec's directory name. We really meant to compare it
with the rhs FileSpec's directory name...
<rdar://problem/12438838>
llvm-svn: 167349
"~rc" via getpwnam() instead of doing tilde expansion and doing soft-link
dereferencing via realpath() - if we're pointing to a softlink, leave it
as-is.
<rdar://problem/12597698>
llvm-svn: 167052
<rdar://problem/12068650>
More fixes to how we handle paths that are used to create a target.
This modification centralizes the location where and how what the user specifies gets resolved. Prior to this fix, the TargetList::CreateTarget variants took a FileSpec object which meant everyone had the opportunity to resolve the path their own way. Now both CreateTarget variants take a "const char *use_exe_path" which allows the TargetList::CreateTarget to centralize where the resolving happens and "do the right thing".
llvm-svn: 166186
LLDB changes argv[0] when debugging a symlink. Now we have the notion of argv0 in the target settings:
target.arg0 (string) =
There is also the program argument that are separate from the first argument that have existed for a while:
target.run-args (arguments) =
When running "target create <exe>", we will place the untouched "<exe>" into target.arg0 to ensure when we run, we run with what the user typed. This has been added to the ProcessLaunchInfo and all other needed places so we always carry around the:
- resolved executable path
- argv0
- program args
Some systems may not support separating argv0 from the resolved executable path and the ProcessLaunchInfo needs to carry all of this information along so that each platform can make that decision.
llvm-svn: 166137
ConstString Host::GetVendorString();
ConstString Host::GetOSString();
comes from. It now all comes from the Host::GetArchitecture (eSystemDefaultArchitecture) like the Apple build was doing to minimize the number of places that need to be updated when Host::GetArchitecture () is called.
llvm-svn: 165805
whether we try to call an external program to load symbols unconditionally,
or if we check the user's preferences before calling it.
ProcessMachCore now sets CanJIT to false - we can't execute code in a core file.
DynamicLoaderDarwinKernel::OSKextLoadedKextSummary::LoadImageUsingMemoryModule changed
to load the kernel from an on-disk file if at all possible.
Don't load the kext binaries out of memory from the remote systems - their linkedit doesn't
seem to be in a good state and we'll error out down in SymbolVendorMacOSX if we try to use
the in-memory images.
Call Symbols::DownloadObjectAndSymbolFile to get the kext/kernel binary -- the external
program may be able to give us a file path on the local filesystem instead of reading
the binary / dSYM over a network drive every time. Fall back to calling
Target::GetSharedModule() like before if DownloadObjectAndSymbolFile fails.
llvm-svn: 165471
the Symbols::LocateExecutableObjectFile method to locate kexts and
kernels instead of copying them out of the memory of the remote
system. This is the fix for <rdar://problem/12416384>.
Fix a variable shadowing problem in
Symbols::LocateMacOSXFilesUsingDebugSymbols which caused the symbol
rich executable binaries to not be found even if they were listed
in the dSYM Info.plist.
Change Symbols::DownloadObjectAndSymbolFile to ignore dsymForUUID's
negative cache - this is typically being called by the user and we
should try even if there's a incorrect entry in the negative cache.
llvm-svn: 165061
This checkin adds the capability for LLDB to load plugins from external dylibs that can provide new commands
It exports an SBCommand class from the public API layer, and a new SBCommandPluginInterface
There is a minimal load-only plugin manager built into the debugger, which can be accessed via Debugger::LoadPlugin.
Plugins are loaded from two locations at debugger startup (LLDB.framework/Resources/PlugIns and ~/Library/Application Support/LLDB/PlugIns) and more can be (re)loaded via the "plugin load" command
For an example of how to make a plugin, refer to the fooplugin.cpp file in examples/plugins/commands
Caveats:
Currently, the new API objects and features are not exposed via Python.
The new commands can only be "parsed" (i.e. not raw) and get their command line via a char** parameter (we do not expose our internal Args object)
There is no unloading feature, which can potentially lead to leaks if you overwrite the commands by reloading the same or different plugins
There is no API exposed for option parsing, which means you may need to use getopt or roll-your-own
llvm-svn: 164865
We can now do:
Specify a path to a debug symbols file:
(lldb) add-dsym <path-to-dsym>
Go and download the dSYM file for the "libunc.dylib" module in your target:
(lldb) add-dsym --shlib libunc.dylib
Go and download the dSYM given a UUID:
(lldb) add-dsym --uuid <UUID>
Go and download the dSYM file for the current frame:
(lldb) add-dsym --frame
llvm-svn: 164806
When attaching on ARM hosted debuggers we were incorrectly setting the triple to "arm-apple-ios". This was happening because in the post attach code, we would lookup the process info through the platform, and if successful, we would get the architecture of the process. This code uses sysctl() calls, but we can only get the CPU type, not the subtype, so we would get ARM for CPU type and nothing for the cpu subtype, so this would map to "arm-apple-ios". I fixed the code to get the cpu subtype from "hw.cpusubtype" which is what we really want for ARM, and not the architecture is already correct. "add-dsym" then works like a charm. I also improved the command output when the architecture changes to show the entire triple instead of just the arch name.
llvm-svn: 163868
Partial fix for the above radar where we now resolve dsym mach-o files within the dSYM bundle when using "add-dsym" through the platform.
llvm-svn: 163676
The attached patch adds support for debugging 32-bit processes when running a 64-bit lldb on an x86_64 Linux system.
Making this work required two basic changes:
1) Getting lldb to report that it could debug 32-bit processes
2) Changing an assumption about how ptrace works when debugging cross-platform
For the first change, I took a conservative approach and only enabled this for x86_64 Linux platforms. It may be that the change I made in Host.cpp could be extended to other 64-bit Linux platforms, but I'm not familiar enough with the other platforms to know for sure.
For the second change, the Linux ProcessMonitor class was assuming that ptrace(PTRACE_[PEEK|POKE]DATA...) would read/write a "word" based on the child process word size. However, the ptrace documentation says that the "word" size read or written is "determined by the OS variant." I verified experimentally that when ptracing a 32-bit child from a 64-bit parent a 64-bit word is read or written.
llvm-svn: 163398
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
'add-dsym' (aka 'target symbols add') should display error messages when dsym file is not found
or the dsym uuid does not match any existing modules. Add TestAddDsymCommand.py test file.
llvm-svn: 162332
than being given the pthread_mutex_t from the Mutex and locks that. That allows us to
track ownership of the Mutex better.
Used this to switch the LLDB_CONFIGURATION_DEBUG enabled assert when we can't get the
gdb-remote sequence mutex to assert when the thread that had the mutex releases it. This
is generally more useful information than saying just who failed to get it (since the
code that had it locked often had released it by the time the assert fired.)
llvm-svn: 158240
TestBackticksWithoutATarget.BackticksWithNoTargetTestCase was calling
GetDummyTarget() when executing for x86_64. When performing session
tearDown, it would get destroyed (and everything would be invalid (arch,
etc).
Then the test would run for i386. The dummy target wasn't being
reinitialized and was invalid. lldb complained that 'current process state
is unsuitable for expression parsing'.
llvm-svn: 156994