The FSEvents APIs are available on iOS6+: however, the DirectoryWatcher
code isn't wired up to really use FSEvents on embedded platforms.
I've duplicated code from DirectoryWatcher-not-implemented.cpp here and
used TargetConditionals instead of adding cmakery to check try_compile;
I couldn't get that to work properly.
Static analyzer has a mechanism of clearing redundant nodes when
analysis hits a certain threshold with a number of nodes in exploded
graph (default is 1000). It is similar to GC and aims removing nodes
not useful for analysis. Unfortunately nodes corresponding to array
subscript expressions (that actively participate in data propagation)
get removed during the cleanup. This might prevent the analyzer from
generating useful notes about where it thinks the data came from.
This fix is pretty much consistent with the way analysis works
already. Lvalue "interestingness" stands for the analyzer's
possibility of tracking values through them.
Differential Revision: https://reviews.llvm.org/D78638
This reverts commit f969c2aa65.
There are some msan buildbot failures sanitzer-x86_64-linux-fast that
I need to investigate.
Differential Revision: https://reviews.llvm.org/D78422
Summary:
Move InstantiateComponent and InstantiateIntrinsicType from symbol.cpp
to type.cpp as that is where they are called.
Put both in InstantiateHelper class to better isolate them.
Add CreateDerivedTypeSpec in InstantiateHelper.
Add non-const forms for AsIntrinsic and AsDerived to avoid const_cast.
No functional changes.
Reviewers: DavidTruby, klausler, PeteSteinfeld, jdoerfert
Reviewed By: klausler
Subscribers: llvm-commits
Tags: #flang, #llvm
Differential Revision: https://reviews.llvm.org/D78678
1. Use Subtarget.isUsingPCRelativeCalls() in LowerConstantPool to
check if using PCRelative addressing.
2. Change MO_GOT_FLAG = 32 to MO_GOT_FLAG = 8 in PPC.h to use
consecutive bits.
Differential Revision: https://reviews.llvm.org/D78406
The contents of the .ARM.exidx section must be ordered by SHF_LINK_ORDER
rules. We don't need to know the precise address for this order, but we
do need to know the relative order of sections. We have been using the
sectionIndex for this purpose, this works when the OutputSection order
has a monotonically increasing virtual address, but it is possible to
write a linker script with non-monotonically increasing virtual address.
For these cases we need to evaluate the base address of the OutputSection
so that we can order the .ARM.exidx sections properly.
This change moves the finalisation of .ARM.exidx till after the first
call to AssignAddresses. This permits us to sort on virtual address which
is linker script safe. It also permits a fix for part of pr44824 where
we generate .ARM.exidx section for the vector table when that table is so
far away it is out of range of the .ARM.exidx section. This fix will come
in a follow up patch.
Differential Revision: https://reviews.llvm.org/D78422
Calling Disconnect while the read thread is running is racy because the
thread can also call Disconnect. This is a follow-up to b424b0bf, which
reorders other occurences of Disconnect/StopReadThread I can find, and also
adds an assertion to guard against new occurences being introduced.
The current Liveness analysis does not support operations with nested regions.
This causes issues when querying liveness information about blocks nested within
operations. Furthermore, the live-in and live-out sets are not computed properly
in these cases.
Differential Revision: https://reviews.llvm.org/D77714
This patch changes the codegen of the builtins for contiguous loads
to map onto the SVE specific IR intrinsics llvm.aarch64.sve.ld1/st1.
Reviewers: SjoerdMeijer, efriedma, kmclaughlin, rengolin
Reviewed By: efriedma
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78673
Summary:
The code in DWARFCompileUnit::BuildAddressRangeTable tries hard to avoid
relying on DW_AT_low/high_pc for compile unit range information, and
this logic is a big cause of llvm/lldb divergence in the lowest layers
of dwarf parsing code.
The implicit assumption in that code is that this information (as opposed to
DW_AT_ranges) is unreliable. However, I have not been able to verify
that assumption. It is definitely not true for all present-day
compilers (gcc, clang, icc), and it was also not the case for the
historic compilers that I have been able to get a hold of (thanks Matt
Godbolt).
All compiler included in my research either produced correct
DW_AT_ranges or .debug_aranges entries, or they produced no DW_AT_hi/lo
pc at all. The detailed findings are:
- gcc >= 4.4: produces DW_AT_ranges and .debug_aranges
- 4.1 <= gcc < 4.4: no DW_AT_ranges, no DW_AT_high_pc, .debug_aranges
present. The upper version range here is uncertain as godbolt.org does
not have intermediate versions.
- gcc < 4.1: no versions on godbolt.org
- clang >= 3.5: produces DW_AT_ranges, and (optionally) .debug_aranges
- 3.4 <= clang < 3.5: no DW_AT_ranges, no DW_AT_high_pc, .debug_aranges
present.
- clang <= 3.3: no DW_AT_ranges, no DW_AT_high_pc, no .debug_aranges
- icc >= 16.0.1: produces DW_AT_ranges
- icc < 16.0.1: no functional versions on godbolt.org (some are present
but fail to compile)
Based on this analysis, I believe it is safe to start trusting
DW_AT_low/high_pc information in dwarf as well as remove the code for
manually reconstructing range information by traversing the DIE
structure, and just keep the line table fallback. The only compilers
where this will change behavior are pre-3.4 clangs, which are almost 7
years old now. However, the functionality should remain unchanged
because we will be able to reconstruct this information from the line
table, which seems to be needed for some line-tables-only scenarios
anyway (haven't researched this too much, but at least some compilers
seem to emit DW_AT_ranges even in these situations).
In addition, benchmarks showed that for these compilers computing the
ranges via line tables is noticably faster than doing so via the DIE
tree.
Other advantages include simplifying the code base, removing some
untested code (the only test changes are recent tests with overly
reduced synthetic dwarf), and increasing llvm convergence.
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D78489
Summary:
The name in an InputItem isn't necessarily resolved if an error occurred,
so it needs to be checked.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45477
Reviewers: klausler, PeteSteinfeld, DavidTruby, jdoerfert, sscalpone
Reviewed By: klausler, sscalpone
Subscribers: llvm-commits
Tags: #llvm, #flang
Differential Revision: https://reviews.llvm.org/D78685
Summary:
Improve C# `{ get; set; } = default;` formatting by handling it in the UnwrappedLineParser rather than trying to merge lines later.
Remove old logic to merge lines.
Update tests as formatting output has changed (as intended).
Reviewers: krasimir, MyDeveloperDay
Reviewed By: krasimir
Subscribers: cfe-commits
Tags: #clang-format, #clang
Differential Revision: https://reviews.llvm.org/D78642
We now use the argparse Action objects to determine the name of the flags.
This fixes cases where the key for the stored result ('dest') is not the
same as the command line flag (e.g. --enable/--disable).
Also add a test that --disabled can be part of the initial UTC_ARGS.
This is split out from D78478
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D78617
Using getValueType() is not correct for architectures extended with CHERI since
we need a pointer type and not the value that is loaded. While stack
protector is useless when you have CHERI (since CHERI provides much
stronger security guarantees), we still have a test to check that we can
generate correct code for checks. Merging b281138a1b
into our tree broke this test. Fix by using TLI.getFrameIndexTy().
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D77785
This change helps improve `dsymutil` documentation.
- Add missing options
- Re-arrange options in alphabetical order
- Wrap inline options in double-back-quote
- `-v` is for `--version` not `--verbose`
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D78479
It currently requires that the condition match the shape of the selected value, but this is only really useful for things like masks. This revision allows for the use of i1 to mean that all of the vector/tensor is selected. This also matches the behavior of LLVM select. A benefit of this change is that transformations that want to generate selects, like those on the CFG, don't have to special case vector/tensor. Previously the only way to generate a select from an i1 was to use a splat, but that doesn't support dynamically shaped/unranked tensors.
Differential Revision: https://reviews.llvm.org/D78690
This revision adds support for canonicalizing the following:
```
br ^bb1
^bb1
br ^bbN(...)
br ^bbN(...)
```
Differential Revision: https://reviews.llvm.org/D78683
This revision adds support for canonicalizing the following:
```
cond_br %cond, ^bb1(A, ..., N), ^bb1(A, ..., N)
br ^bb1(A, ..., N)
```
If the operands to the successor are different and the cond_br is the only predecessor, we emit selects for the branch operands.
```
cond_br %cond, ^bb1(A), ^bb1(B)
%select = select %cond, A, B
br ^bb1(%select)
```
Differential Revision: https://reviews.llvm.org/D78682