VectorTransferPermutationMapLoweringPatterns can be enabled via a pass option. These additional patterns lower permutation maps to minor identity maps with broadcasting, if possible, allowing for more efficient vector load/stores. The option is deactivated by default.
Differential Revision: https://reviews.llvm.org/D102593
LinalgOps that are all parallel do not use the value of `outs`
tensor. The semantics is that the `outs` tensor is fully
overwritten. Using anything other than `init_tensor` can add false
dependencies between operations, when the use is just for the shape of
the tensor. Adding a canonicalization to always use `init_tensor` in
such cases, breaks this dependence.
Differential Revision: https://reviews.llvm.org/D102561
Original interfaces are not safe to be called during dialect conversion.
This is because some ops (e.g. `dynamic_reshape(input, target_shape)`)
depend on the values of their operands to calculate the output shape.
However the operands may be out of reach during dialect conversion (e.g.
converting from tensor world to buffer world). This patch provides a new
kind of interface which accpets user-provided operands to solve this
problem.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D102317
"[mlir] Speed up Lexer::getEncodedSourceLocation"
This reverts commit 3043be9d2d and commit
861d69a525.
This change resulted in printing textual MLIR that can't be parsed; see
review thread https://reviews.llvm.org/D102567 for details.
This is a hook that allows for providing custom initialization of the pattern, e.g. if it has bounded recursion, setting the debug name, etc., without needing to define a custom constructor. A non-virtual hook was chosen to avoid polluting the vtable with code that we really just want to be inlined when constructing the pattern. The alternative to this would be to just define a constructor for each pattern, this unfortunately creates a lot of otherwise unnecessary boiler plate for a lot of patterns and a hook provides a much simpler/cleaner interface for the very common case.
Differential Revision: https://reviews.llvm.org/D102440
The version is used by LSP clients to ignore stale diagnostics, and can be used in a followup to help verify incremental changes.
Differential Revision: https://reviews.llvm.org/D102644
This adds the ability to specify a location when creating BlockArguments.
Notably Value::getLoc() will return this correctly, which makes diagnostics
more precise (e.g. the example in test-legalize-type-conversion.mlir).
This is currently optional to avoid breaking any existing code - if
absent, the BlockArgument defaults to using the location of its enclosing
operation (preserving existing behavior).
The bulk of this change is plumbing location tracking through the parser
and printer to make sure it can round trip (in -mlir-print-debuginfo
mode). This is complete for generic operations, but requires manual
adoption for custom ops.
I added support for function-like ops to round trip their argument
locations - they print correctly, but when parsing the locations are
dropped on the floor. I intend to fix this, but it will require more
invasive plumbing through "function_like_impl" stuff so I think it
best to split it out to its own patch.
Differential Revision: https://reviews.llvm.org/D102567
During affine loop fusion, create private memrefs for escaping memrefs
too under the conditions that:
-- the source is not removed after fusion, and
-- the destination does not write to the memref.
This creates more fusion opportunities as illustrated in the test case.
Reviewed By: bondhugula, ayzhuang
Differential Revision: https://reviews.llvm.org/D102604
- Enables inferring return type for ConstShape, takes into account valid return types;
- The compatible return type function could be reused, leaving that for next use refactoring;
Differential Revision: https://reviews.llvm.org/D102182
The experimental flag for "inplace" bufferization in the sparse
compiler can be replaced with the new inplace attribute. This gives
a uniform way of expressing the more efficient way of bufferization.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102538
Initial version of pooling assumed normalization was accross all elements
equally. TOSA actually requires the noramalization is perform by how
many elements were summed (edges are not artifically dimmer). Updated
the lowering to reflect this change with corresponding tests.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D102540
Translate ExitDataOp with delete and copyout operands to runtime call.
This is done in a similar way as D101504.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102381
Broadcast dimensions of vector transfer ops are always in-bounds. This is consistent with the fact that the starting position of a transfer is always in-bounds.
Differential Revision: https://reviews.llvm.org/D102566
This brings it in line with the bultin unrealized_conversion_cast,
which memref.buffer_cast is a specialized version of.
Differential Revision: https://reviews.llvm.org/D102608
At the moment `MlirModule`s can be converted to `MlirOperation`s, but not
the other way around (at least not without going around the C API). This
makes it impossible to e.g. run passes over a `ModuleOp` created through
`mlirOperationCreate`.
Reviewed By: nicolasvasilache, mehdi_amini
Differential Revision: https://reviews.llvm.org/D102497
Add TransferWritePermutationLowering, which replaces permutation maps of TransferWriteOps with vector.transpose.
Differential Revision: https://reviews.llvm.org/D102548
Provide an option to specify optimization level when creating an
ExecutionEngine via the MLIR JIT Python binding. Not only is the
specified optimization level used for code generation, but all LLVM
optimization passes at the optimization level are also run prior to
machine code generation (akin to the mlir-cpu-runner tool).
Default opt level continues to remain at level two (-O2).
Contributions in part from Prashant Kumar <prashantk@polymagelabs.com>
as well.
Differential Revision: https://reviews.llvm.org/D102551
We are moving from just dense/compressed to more general dim level
types, so we need more than just an "i1" array for annotations.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102520
This change allows the SRC and DST of dma_start operations to be located in the
same memory space. This applies to both the Affine dialect and Memref dialect
versions of these Ops. The documention has been updated to reflect this by
explicitly stating overlapping memory locations are not supported (undefined
behavior).
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D102274
test/lib/Transforms/ has bitrot and become somewhat of a dumping grounds for testing pretty much any part of the project. This revision cleans this up, and moves the files within to a directory that reflects what is actually being tested.
Differential Revision: https://reviews.llvm.org/D102456
Lowering div elementwise op to the linalg dialect. Since tosa only supports integer division, that is the only version that is currently implemented.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D102430
Support OpImageQuerySize in spirv dialect
co-authored-by: Alan Liu <alanliu.yf@gmail.com>
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D102029
Create a copy of vector-to-loops.mlir and adapt the test for
ProgressiveVectorToSCF. Fix a small bug in getExtractOp() triggered by
this test.
Differential Revision: https://reviews.llvm.org/D102388
Do not rely on pass labels to detect if the pattern was already applied in the past (which allows for more some extra optimizations to avoid extra InsertOps and ExtractOps). Instead, check if these optimizations can be applied on-the-fly.
This also fixes a bug, where vector.insert and vector.extract ops sometimes disappeared in the middle of the pass because they get folded away, but the next application of the pattern expected them to be there.
Differential Revision: https://reviews.llvm.org/D102206
Rounding to integers requires rounding (for floating points) and clipping
to the min/max values of the destination range. Added this behavior and
updated tests appropriately.
Reviewed By: sjarus, silvas
Differential Revision: https://reviews.llvm.org/D102375
Instead of an SCF for loop, these pattern generate fully unrolled loops with no temporary buffer allocations.
Differential Revision: https://reviews.llvm.org/D101981
Broadcast dimensions of a vector transfer op have no corresponding dimension in the mask vector. E.g., a 2-D TransferReadOp, where one dimension is a broadcast, can have a 1-D `mask` attribute.
This commit also adds a few additional transfer op integration tests for various combinations of broadcasts, masking, dim transposes, etc.
Differential Revision: https://reviews.llvm.org/D101745
Broadcast dimensions of a vector transfer op have no corresponding dimension in the mask vector. E.g., a 2-D TransferReadOp, where one dimension is a broadcast, can have a 1-D `mask` attribute.
This commit also adds a few additional transfer op integration tests for various combinations of broadcasts, masking, dim transposes, etc.
Differential Revision: https://reviews.llvm.org/D101745
First set of "boilerplate" to get sparse tensor
passes available through CAPI and Python.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D102362
This allows for diagnostics emitted during parsing/verification to be surfaced to the user by the language client, as opposed to just being emitted to the logs like they are now.
Differential Revision: https://reviews.llvm.org/D102293
This patch begins to translate acc.enter_data operation to call to tgt runtime call.
It currently only translate create/copyin operands of memref type. This acts as a basis to add support
for FIR types in the Flang/OpenACC support. It follows more or less a similar path than clang
with `omp target enter data map` directives.
This patch is taking a different approach than D100678 and perform a translation to LLVM IR
and make use of the OpenMPIRBuilder instead of doing a conversion to the LLVMIR dialect.
OpenACC support in Flang will rely on the current OpenMP runtime where 1:1 lowering can be
applied. Some extension will be added where features are not available yet.
Big part of this code will be shared for other standalone data operations in the OpenACC
dialect such as acc.exit_data and acc.update.
It is likely that parts of the lowering can also be shared later with the ops for
standalone data directives in the OpenMP dialect when they are introduced.
This is an initial translation and it probably needs more work.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D101504
The current static checker for linalg does not work on the decreasing
index cases well. So, this is to Update the current static bound checker
for linalg to cover decreasing index cases.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D102302
This factors out the pass timing code into a separate `TimingManager`
that can be plugged into the `PassManager` from the outside. Users are
able to provide their own implementation of this manager, and use it to
time additional code paths outside of the pass manager. Also allows for
multiple `PassManager`s to run and contribute to a single timing report.
More specifically, moves most of the existing infrastructure in
`Pass/PassTiming.cpp` into a new `Support/Timing.cpp` file and adds a
public interface in `Support/Timing.h`. The `PassTiming` instrumentation
becomes a wrapper around the new timing infrastructure which adapts the
instrumentation callbacks to the new timers.
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D100647
Add a conversion pass to convert higher-level type before translation.
This conversion extract meangingful information and pack it into a struct that
the translation (D101504) will be able to understand.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D102170
First step in adding alignment as an attribute to MLIR global definitions. Alignment can be specified for global objects in LLVM IR. It can also be specified as a named attribute in the LLVMIR dialect of MLIR. However, this attribute has no standing and is discarded during translation from MLIR to LLVM IR. This patch does two things: First, it adds the attribute to the syntax of the llvm.mlir.global operation, and by doing this it also adds accessors and verifications. The syntax is "align=XX" (with XX being an integer), placed right after the value of the operation. Second, it allows transforming this operation to and from LLVM IR. It is checked whether the value is an integer power of 2.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101492
Updated tests to include broadcast of left and right. Includes
bypass if in-type and out-type match shape (no broadcasting).
Differential Revision: https://reviews.llvm.org/D102276
This is actually necessary for correctness, as memref.reinterpret_cast
doesn't verify if the output shape doesn't match the static sizes.
Differential Revision: https://reviews.llvm.org/D102232
VectorTransfer split previously only split read xfer ops. This adds
the same logic to write ops. The resulting code involves 2
conditionals for write ops while read ops only needed 1, but the created
ops are built upon the same patterns, so pattern matching/expectations
are all consistent other than in regards to the if/else ops.
Differential Revision: https://reviews.llvm.org/D102157
A very elaborate, but also very fun revision because all
puzzle pieces are finally "falling in place".
1. replaces lingalg annotations + flags with proper sparse tensor types
2. add rigorous verification on sparse tensor type and sparse primitives
3. removes glue and clutter on opaque pointers in favor of sparse tensor types
4. migrates all tests to use sparse tensor types
NOTE: next CL will remove *all* obsoleted sparse code in Linalg
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102095
According to the API contract, LinalgLoopDistributionOptions
expects to work on parallel iterators. When getting processor
information, only loop ranges for parallel dimensions should
be fed in. But right now after generating scf.for loop nests,
we feed in *all* loops, including the ones materialized for
reduction iterators. This can cause unexpected distribution
of reduction dimensions. This commit fixes it.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D102079
* The PybindAdaptors.h file has been evolving across different sub-projects (npcomp, circt) and has been successfully used for out of tree python API interop/extensions and defining custom types.
* Since sparse_tensor.encoding is the first in-tree custom attribute we are supporting, it seemed like the right time to upstream this header and use it to define the attribute in a way that we can support for both in-tree and out-of-tree use (prior, I had not wanted to upstream dead code which was not used in-tree).
* Adapted the circt version of `mlir_type_subclass`, also providing an `mlir_attribute_subclass`. As we get a bit of mileage on this, I would like to transition the builtin types/attributes to this mechanism and delete the old in-tree only `PyConcreteType` and `PyConcreteAttribute` template helpers (which cannot work reliably out of tree as they depend on internals).
* Added support for defaulting the MlirContext if none is passed so that we can support the same idioms as in-tree versions.
There is quite a bit going on here and I can split it up if needed, but would prefer to keep the first use and the header together so sending out in one patch.
Differential Revision: https://reviews.llvm.org/D102144
* Adds dialect registration, hand coded 'encoding' attribute and test.
* An MLIR CAPI tablegen backend for attributes does not exist, and this is a relatively complicated case. I opted to hand code it in a canonical way for now, which will provide a reasonable blueprint for building out the tablegen version in the future.
* Also added a (local) CMake function for declaring new CAPI tests, since it was getting repetitive/buggy.
Differential Revision: https://reviews.llvm.org/D102141
When using parallel loop construct, the OpenMP specification allows for
guided, auto and runtime as scheduling variants (as well as static and
dynamic which are already supported).
This adds the translation from MLIR to LLVM-IR for these scheduling
variants.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D101435
In the buffer deallocation pass, unranked memref types are not properly supported.
After investigating this issue, it turns out that the Clone and Dealloc operation
does not support unranked memref types in the current implementation.
This patch adds the missing feature and enables the transformation of any memref
type.
This patch solves this bug: https://bugs.llvm.org/show_bug.cgi?id=48385
Differential Revision: https://reviews.llvm.org/D101760
Previously, the OpenMP to LLVM IR conversion was setting the alloca insertion
point to the same position as the main compuation when converting OpenMP
`parallel` operations. This is problematic if, for example, the `parallel`
operation is placed inside a loop and would keep allocating on stack on each
iteration leading to stack overflow.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D101307
We are able to bind the result from native function while rewriting
pattern. In matching pattern, if we want to get some values back, we can
do that by passing parameter as return value placeholder. Besides, add
the semantic of '$_self' in NativeCodeCall while matching, it'll be the
operation that defines certain operand.
Differential Revision: https://reviews.llvm.org/D100746
The current design uses a unique entry for each argument/result attribute, with the name of the entry being something like "arg0". This provides for a somewhat sparse design, but ends up being much more expensive (from a runtime perspective) in-practice. The design requires building a string every time we lookup the dictionary for a specific arg/result, and also requires N attribute lookups when collecting all of the arg/result attribute dictionaries.
This revision restructures the design to instead have an ArrayAttr that contains all of the attribute dictionaries for arguments and another for results. This design reduces the number of attribute name lookups to 1, and allows for O(1) lookup for individual element dictionaries. The major downside is that we can end up with larger memory usage, as the ArrayAttr contains an entry for each element even if that element has no attributes. If the memory usage becomes too problematic, we can experiment with a more sparse structure that still provides a lot of the wins in this revision.
This dropped the compilation time of a somewhat large TensorFlow model from ~650 seconds to ~400 seconds.
Differential Revision: https://reviews.llvm.org/D102035
This provides information when the user hovers over a part of the source .mlir file. This revision adds the following hover behavior:
* Operation:
- Shows the generic form.
* Operation Result:
- Shows the parent operation name, result number(s), and type(s).
* Block:
- Shows the parent operation name, block number, predecessors, and successors.
* Block Argument:
- Shows the parent operation name, parent block, argument number, and type.
Differential Revision: https://reviews.llvm.org/D101113
Implements proper (de-)serialization logic for BranchConditionalOp when
such ops have true/false target operands.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D101602
Replace all `linalg.indexed_generic` ops by `linalg.generic` ops that access the iteration indices using the `linalg.index` op.
Differential Revision: https://reviews.llvm.org/D101612
The pattern to convert subtensor ops to their rank-reduced versions
(by dropping unit-dims in the result) can also convert to a zero-rank
tensor. Handle that case.
This also fixes a OOB access bug in the existing pattern for such
cases.
Differential Revision: https://reviews.llvm.org/D101949
Nearly complete alignment to spec v0.22
- Adds Div op
- Concat inputs now variadic
- Removes Placeholder op
Note: TF side PR https://github.com/tensorflow/tensorflow/pull/48921 deletes Concat legalizations to avoid breaking TensorFlow CI. This must be merged only after the TF PR has merged.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D101958
Fixing a minor bug which lead to element type of the output being
modified when folding reshapes with generic op.
Differential Revision: https://reviews.llvm.org/D101942
Implements support for undialated depthwise convolution using the existing
depthwise convolution operation. Once convolutions migrate to yaml defined
versions we can rewrite for cleaner implementation.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D101579
These instructions map to SVE-specific instrinsics that accept a
predicate operand to support control flow in vector code.
Differential Revision: https://reviews.llvm.org/D100982
This patch adds support for vectorizing loops with 'iter_args'
implementing known reductions along the vector dimension. Comparing to
the non-vector-dimension case, two additional things are done during
vectorization of such loops:
- The resulting vector returned from the loop is reduced to a scalar
using `vector.reduce`.
- In some cases a mask is applied to the vector yielded at the end of
the loop to prevent garbage values from being written to the
accumulator.
Vectorization of reduction loops is disabled by default. To enable it, a
map from loops to array of reduction descriptors should be explicitly passed to
`vectorizeAffineLoops`, or `vectorize-reductions=true` should be passed
to the SuperVectorize pass.
Current limitations:
- Loops with a non-unit step size are not supported.
- n-D vectorization with n > 1 is not supported.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100694
The old index op handling let the new index operations point back to the
producer block. As a result, after fusion some index operations in the
fused block had back references to the old producer block resulting in
illegal IR. The patch now relies on a block and value mapping to avoid
such back references.
Differential Revision: https://reviews.llvm.org/D101887
While we figure out how to best add Standard support for scalable
vectors, these instructions provide a workaround for basic arithmetic
between scalable vectors.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100837
This revision migrates more code from Linalg into the new permanent home of
SparseTensor. It replaces the test passes with proper compiler passes.
NOTE: the actual removal of the last glue and clutter in Linalg will follow
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D101811
We weren't properly visiting region successors when the terminator wasn't return like, which could create incorrect results in the analysis. This revision ensures that we properly visit region successors, to avoid optimistically assuming a value is constant when it isn't.
Differential Revision: https://reviews.llvm.org/D101783
All linalg.init operations must be fed into a linalg operation before
subtensor. The inserted linalg.fill guarantees it executes correctly.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D101848
Lowerings equal and arithmetic_right_shift for elementwise ops to linalg dialect using linalg.generic
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D101804
Given the source and destination shapes, if they are static, or if the
expanded/collapsed dimensions are unit-extent, it is possible to
compute the reassociation maps that can be used to reshape one type
into another. Add a utility method to return the reassociation maps
when possible.
This utility function can be used to fuse a sequence of reshape ops,
given the type of the source of the producer and the final result
type. This pattern supercedes a more constrained folding pattern added
to DropUnitDims pass.
Differential Revision: https://reviews.llvm.org/D101343
Convert subtensor and subtensor_insert operations to use their
rank-reduced versions to drop unit dimensions.
Differential Revision: https://reviews.llvm.org/D101495
The current implementation had a bug as it was relying on the target vector
dimension sizes to calculate where to insert broadcast. If several dimensions
have the same size we may insert the broadcast on the wrong dimension. The
correct broadcast cannot be inferred from the type of the source and
destination vector.
Instead when we want to extend transfer ops we calculate an "inverse" map to the
projected permutation and insert broadcast in place of the projected dimensions.
Differential Revision: https://reviews.llvm.org/D101738
* NFC but has some fixes for CMake glitches discovered along the way (things not cleaning properly, co-mingled depends).
* Includes previously unsubmitted fix in D98681 and a TODO to fix it more appropriately in a smaller followup.
Differential Revision: https://reviews.llvm.org/D101493
Move TransposeOp lowering in its own populate function as in some cases
it is better to keep it during ContractOp lowering to better
canonicalize it rather than emiting scalar insert/extract.
Differential Revision: https://reviews.llvm.org/D101647
Add missing check in -test-affine-data-copy without which a test case
that has no affine.loads at all would crash this test pass. Fix two
clang-tidy warnings in the file while at this. (Not adding a test case
given the triviality.)
Differential Revision: https://reviews.llvm.org/D101719
* This makes them consistent with custom types/attributes, whose constructors will do a type checked conversion. Of course, the base classes can represent everything so never error.
* More importantly, this makes it possible to subclass Type and Attribute out of tree in sensible ways.
Differential Revision: https://reviews.llvm.org/D101734
Added canonicalization for vector_load and vector_store. An existing
pattern SimplifyAffineOp can be reused to compose maps that supplies
result into them. Added AffineVectorStoreOp and AffineVectorLoadOp
into static_assert of SimplifyAffineOp to allow operation to use it.
This fixes the bug filed: https://bugs.llvm.org/show_bug.cgi?id=50058
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D101691
(1) migrates the encoding from TensorDialect into the new SparseTensorDialect
(2) replaces dictionary-based storage and builders with struct-like data
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D101669
Three patterns are added to convert into vector.multi_reduction into a
sequence of vector.reduction as the following:
- Transpose the inputs so inner most dimensions are always reduction.
- Reduce rank of vector.multi_reduction into 2d with inner most
reduction dim (get the 2d canical form)
- 2D canonical form is converted into a sequence of vector.reduction.
There are two things we might worth in a follow up diff:
- An scf.for (maybe optionally) around vector.reduction instead of unrolling it.
- Breakdown the vector.reduction into a sequence of vector.reduction
(e.g tree-based reduction) instead of relying on how downstream dialects
handle it.
Note: this will requires passing target-vector-length
Differential Revision: https://reviews.llvm.org/D101570
This is the very first step toward removing the glue and clutter from linalg and
replace it with proper sparse tensor types. This revision migrates the LinalgSparseOps
into SparseTensorOps of a sparse tensor dialect. This also provides a new home for
sparse tensor related transformation.
NOTE: the actual replacement with sparse tensor types (and removal of linalg glue/clutter)
will follow but I am trying to keep the amount of changes per revision manageable.
Differential Revision: https://reviews.llvm.org/D101573
Constant-0 dim expr values should be avoided for linalg as it can prevent
fusion. This includes adding support for rank-0 reshapes.
Differential Revision: https://reviews.llvm.org/D101418
This is the very first step toward removing the glue and clutter from linalg and
replace it with proper sparse tensor types. This revision migrates the LinalgSparseOps
into SparseTensorOps of a sparse tensor dialect. This also provides a new home for
sparse tensor related transformation.
NOTE: the actual replacement with sparse tensor types (and removal of linalg glue/clutter)
will follow but I am trying to keep the amount of changes per revision manageable.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D101488
This enables to express more complex parallel loops in the affine framework,
for example, in cases of tiling by sizes not dividing loop trip counts perfectly
or inner wavefront parallelism, among others. One can't use affine.max/min
and supply values to the nested loop bounds since the results of such
affine.max/min operations aren't valid symbols. Making them valid symbols
isn't an option since they would introduce selection trees into memref
subscript arithmetic as an unintended and undesired consequence. Also
add support for converting such loops to SCF. Drop some API that isn't used in
the core repo from AffineParallelOp since its semantics becomes ambiguous in
presence of max/min bounds. Loop normalization is currently unavailable for
such loops.
Depends On D101171
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D101172
Introduce a basic support for parallelizing affine loops with reductions
expressed using iteration arguments. Affine parallelism detector now has a flag
to assume such reductions are parallel. The transformation handles a subset of
parallel reductions that are can be expressed using affine.parallel:
integer/float addition and multiplication. This requires to detect the
reduction operation since affine.parallel only supports a fixed set of
reduction operators.
Reviewed By: chelini, kumasento, bondhugula
Differential Revision: https://reviews.llvm.org/D101171
FillOp allows complex ops, and filling a properly sized buffer with
a default zero complex number is implemented.
Differential Revision: https://reviews.llvm.org/D99939
This revision adds support for vectorizing more general linalg operations with projected permutation maps.
This is achieved by eagerly broadcasting the intermediate vector to the common size
of the iteration domain of the linalg op. This allows a much more natural expression of
generalized vectorization but may introduce additional computations until all the
proper canonicalizations are implemented.
This generalization modifies the vector.transfer_read/write permutation logic and
exposes the fact that the logic employed in vector.contract was too ad-hoc.
As a consequence, changes occur in the permutation / transposition logic for contraction. In turn this prompts supporting more cases in the lowering of contract
to matrix intrinsics, which is required to make the corresponding tests pass.
Differential revision: https://reviews.llvm.org/D101165
The patch extends the OpDSL with support for:
- Constant values
- Capture scalar parameters
- Access the iteration indices using the index operation
- Provide predefined floating point and integer types.
Up to now the patch only supports emitting the new nodes. The C++/yaml path is not fully implemented. The fill_rng_2d operation defined in emit_structured_generic.py makes use of the new DSL constructs.
Differential Revision: https://reviews.llvm.org/D101364
This adds a method to directly invoke `mlirOperationDestroy` on the
MlirOperation wrapped by a PyOperation.
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101422