Commit Graph

4 Commits

Author SHA1 Message Date
River Riddle 85ab413b53 [mlir][PDL] Add support for variadic operands and results in the PDL byte code
Supporting ranges in the byte code requires additional complexity, given that a range can't be easily representable as an opaque void *, as is possible with the existing bytecode value types (Attribute, Type, Value, etc.). To enable representing a range with void *, an auxillary storage is used for the actual range itself, with the pointer being passed around in the normal byte code memory. For type ranges, a TypeRange is stored. For value ranges, a ValueRange is stored. The above problem represents a majority of the complexity involved in this revision, the rest is adapting/adding byte code operations to support the changes made to the PDL interpreter in the parent revision.

After this revision, PDL will have initial end-to-end support for variadic operands/results.

Differential Revision: https://reviews.llvm.org/D95723
2021-03-16 13:20:19 -07:00
River Riddle 3a833a0e0e [mlir][PDL] Add support for variadic operands and results in the PDL Interpreter
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.

This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.

Differential Revision: https://reviews.llvm.org/D95722
2021-03-16 13:20:19 -07:00
River Riddle 02c4c0d5b2 [mlir][pdl] Remove CreateNativeOp in favor of a more general ApplyNativeRewriteOp.
This has a numerous amount of benefits, given the overly clunky nature of CreateNativeOp:
* Users can now call into arbitrary rewrite functions from inside of PDL, allowing for more natural interleaving of PDL/C++ and enabling for more of the pattern to be in PDL.
* Removes the need for an additional set of C++ functions/registry/etc. The new ApplyNativeRewriteOp will use the same PDLRewriteFunction as the existing RewriteOp. This reduces the API surface area exposed to users.

This revision also introduces a new PDLResultList class. This class is used to provide results of native rewrite functions back to PDL. We introduce a new class instead of using a SmallVector to simplify the work necessary for variadics, given that ranges will require some changes to the structure of PDLValue.

Differential Revision: https://reviews.llvm.org/D95720
2021-03-16 13:20:18 -07:00
River Riddle abfd1a8b3b [mlir][PDL] Add support for PDL bytecode and expose PDL support to OwningRewritePatternList
PDL patterns are now supported via a new `PDLPatternModule` class. This class contains a ModuleOp with the pdl::PatternOp operations representing the patterns, as well as a collection of registered C++ functions for native constraints/creations/rewrites/etc. that may be invoked via the pdl patterns. Instances of this class are added to an OwningRewritePatternList in the same fashion as C++ RewritePatterns, i.e. via the `insert` method.

The PDL bytecode is an in-memory representation of the PDL interpreter dialect that can be efficiently interpreted/executed. The representation of the bytecode boils down to a code array(for opcodes/memory locations/etc) and a memory buffer(for storing attributes/operations/values/any other data necessary). The bytecode operations are effectively a 1-1 mapping to the PDLInterp dialect operations, with a few exceptions in cases where the in-memory representation of the bytecode can be more efficient than the MLIR representation. For example, a generic `AreEqual` bytecode op can be used to represent AreEqualOp, CheckAttributeOp, and CheckTypeOp.

The execution of the bytecode is split into two phases: matching and rewriting. When matching, all of the matched patterns are collected to avoid the overhead of re-running parts of the matcher. These matched patterns are then considered alongside the native C++ patterns, which rewrite immediately in-place via `RewritePattern::matchAndRewrite`,  for the given root operation. When a PDL pattern is matched and has the highest benefit, it is passed back to the bytecode to execute its rewriter.

Differential Revision: https://reviews.llvm.org/D89107
2020-12-01 15:05:50 -08:00