This patch adds system registers for controlling aspects of SVE:
- ZCR_EL1 (r/w) visible at EL1 and EL0.
- ZCR_EL2 (r/w) visible at EL2 and Non-secure EL1 and EL0.
- ZCR_EL3 (r/w) visible at all exception levels.
and a system register identifying SVE:
- ID_AA64ZFR0_EL1 (r) SVE Feature identifier.
Reviewers: SjoerdMeijer, samparker, pbarrio, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D50885
llvm-svn: 340158
This patch enables instructions that are destructive on their
destination- and first source operand, to be prefixed with a
MOVPRFX instruction.
This patch also adds a variety of tests:
- positive tests for all instructions and forms that accept a
movprfx for either or both predicated and unpredicated forms.
- negative tests for all instructions and forms that do not accept
an unpredicated or predicated movprfx.
- negative tests for the diagnostics that get emitted when a MOVPRFX
instruction is used incorrectly.
This is patch [2/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49593
llvm-svn: 338261
The WHILE instructions generate a predicate that is true while the
comparison of the first scalar operand (incremented for each predicate
element) with the second scalar operand is true and false thereafter.
WHILELE While incrementing signed scalar less than or equal to scalar
WHILELO While incrementing unsigned scalar lower than scalar
WHILELS While incrementing unsigned scalar lower than or same as scalar
WHILELT While incrementing signed scalar less than scalar
e.g.
whilele p0.s, x0, x1
generates predicate p0 (for 32bit elements) by incrementing
(signed) x0 and comparing that vector to splat(x1).
llvm-svn: 338211
The instructions added in this patch permit active elements within
a vector to be processed sequentially without unpacking the vector.
PFIRST Set the first active element to true.
PNEXT Find next active element in predicate.
CTERMEQ Compare and terminate loop when equal.
CTERMNE Compare and terminate loop when not equal.
llvm-svn: 338210
This patch adds PFALSE (unconditionally sets all elements of
the predicate to false) and PTEST (set the status flags for the
predicate).
llvm-svn: 338198
This patch adds support for instructions that partition a predicate
based on data-dependent termination conditions in a loop.
BRKA Break after the first true condition
BRKAS Break after the first true condition, setting condition flags
BRKB Break before the first true condition
BRKBS Break before the first true condition, setting condition flags
BRKPA Break after the first true condition, propagating from the
previous partition
BRKPAS Break after the first true condition, propagating from the
previous partition, setting condition flags
BRKPB Break before the first true condition, propagating from the
previous partition
BRKPBS Break before the first true condition, propagating from the
previous partition, setting condition flags
BRKN Propagate break to next partition
BKRNS Propagate break to next partition, setting condition flags
llvm-svn: 338196
This patch adds support for various integer reduction operations:
SADDV signed add reduction to scalar
UADDV unsigned add reduction to scalar
SMAXV signed maximum reduction to scalar
SMINV signed minimum reduction to scalar
UMAXV unsigned maximum reduction to scalar
UMINV unsigned minimum reduction to scalar
ANDV logical AND reduction to scalar
ORV logical OR reduction to scalar
EORV logical EOR reduction to scalar
The reduction is predicated, e.g.
smaxv s0, p0, z1.s
performs a signed maximum reduction on active elements in z1,
and stores the (signed max value) result in s0.
llvm-svn: 338126
This patch adds support for various floating-point
reduction operations:
FADDA strictly-ordered add reduction, accumulating in scalar
FADDV recursive add reduction to scalar
FMAXV recursive max reduction to scalar
FMINV recursive min reduction to scalar
FMAXNMV recursive max number reduction to scalar
FMINNMV recursive min number reduction to scalar
The reduction is predicated, e.g.
fadda d0, p0, d0, z1.d
performs the add-reduction in strict order on active elements
in z1, accumulating into d0.
faddv d0, p0, z1.d
performs the add-reduction (not in strict order)
on active elements in z1, storing the result in d0.
llvm-svn: 338123
This patch adds support for transcendental acceleration
instructions 'FEXPA' (exponential accelerator) and 'FTSSEL'
(trigonometric select coefficient).
llvm-svn: 338121
This patch adds the following instructions:
RBIT reverse bits within each active elemnt (predicated), e.g.
rbit z0.d, p0/m, z1.d
for 8, 16, 32 and 64 bit elements.
REV reverse order of elements in data/predicate vector
(unpredicated), e.g.
rev z0.d, z1.d
rev p0.d, p1.d
for 8, 16, 32 and 64 bit elements.
REVB reverse order of bytes within each active element, e.g.
revb z0.d, p0/m, z1.d
for 16, 32 and 64 bit elements.
REVH reverse order of 16-bit half-words within each active
element, e.g.
revh z0.d, p0/m, z1.d
for 32 and 64 bit elements.
REVW reverse order of 32-bit words within each active element,
e.g.
revw z0.d, p0/m, z1.d
for 64 bit elements.
llvm-svn: 337534
This patch adds support for the following unpredicated
floating-point instructions:
FADD Floating point add
FSUB Floating point subtract
FMUL Floating point multiplication
FTSMUL Floating point trigonometric starting value
FRECPS Floating point reciprocal step
FRSQRTS Floating point reciprocal square root step
The instructions have the following assembly format:
fadd z0.h, z1.h, z2.h
and have variants for 16, 32 and 64-bit FP elements.
llvm-svn: 337383
The signed/unsigned DOT instructions perform a dot-product on
quadtuplets from two source vectors and accumulate the result in
the destination register. The instructions come in two forms:
Vector form, e.g.
sdot z0.s, z1.b, z2.b - signed dot product on four 8-bit quad-tuplets,
accumulating results in 32-bit elements.
udot z0.d, z1.h, z2.h - unsigned dot product on four 16-bit quad-tuplets,
accumulating results in 64-bit elements.
Indexed form, e.g.
sdot z0.s, z1.b, z2.b[3] - signed dot product on four 8-bit quad-tuplets
with specified quadtuplet from second
source vector, accumulating results in 32-bit
elements.
udot z0.d, z1.h, z2.h[1] - dot product on four 16-bit quad-tuplets
with specified quadtuplet from second
source vector, accumulating results in 64-bit
elements.
llvm-svn: 337372
This patch adds the following predicated instructions:
UDIV Unsigned divide active elements
UDIVR Unsigned divide active elements, reverse form.
SDIV Signed divide active elements
SDIVR Signed divide active elements, reverse form.
e.g.
udiv z0.s, p0/m, z0.s, z1.s
(unsigned divide active elements in z0 by z1, store result in z0)
sdivr z0.s, p0/m, z0.s, z1.s
(signed divide active elements in z1 by z0, store result in z0)
llvm-svn: 337369
This patch adds the following instructions:
MUL - multiply vectors, e.g.
mul z0.h, p0/m, z0.h, z1.h
- multiply with immediate, e.g.
mul z0.h, z0.h, #127
SMULH - signed multiply returning high half, e.g.
smulh z0.h, p0/m, z0.h, z1.h
UMULH - unsigned multiply returning high half, e.g.
umulh z0.h, p0/m, z0.h, z1.h
llvm-svn: 337358
This patch completes support for the following floating point
instructions that take FP immediates:
FADD* (addition)
FSUB (subtract)
FSUBR (subtract reverse form)
FMUL* (multiplication)
FMAX* (maximum)
FMAXNM (maximum number)
FMIN (maximum)
FMINNM (maximum number)
All operations are predicated and take a FP immediate operand,
e.g.
fadd z0.h, p0/m, z0.h, #0.5
fmin z0.s, p0/m, z0.s, #1.0
^___________^ (tied)
* Instructions added in a previous patch.
llvm-svn: 337272
The SPLICE instruction splices two vectors into one vector using a
predicate. It copies the active elements from the first vector, and
then fills the remaining elements with the low-numbered elements from
the second vector.
The instruction has the following form, e.g.
splice z0.b, p0, z0.b, z1.b
for 8-bit elements. It also supports 16, 32 and
64-bit elements.
llvm-svn: 337253
This patch adds an instruction that allows extracting
a vector from a pair of vectors, given an immediate index
that describes the element position to extract from.
The instruction has the following assembly:
ext z0.b, z0.b, z1.b, #imm
where #imm is an immediate between 0 and 255.
llvm-svn: 337251
This patch adds support for the following unpack instructions:
- PUNPKLO, PUNPKHI Unpack elements from low/high half and
place into elements of twice their size.
e.g. punpklo p0.h, p0.b
- UUNPKLO, UUNPKHI Unpack elements from low/high half and
SUNPKLO, SUNPKHI place into elements of twice their size
after zero- or sign-extending the values.
e.g. uunpklo z0.h, z0.b
llvm-svn: 336982
The compact instruction shuffles active elements of vector
into lowest numbered elements and sets remaining elements
to zero.
e.g.
compact z0.s, p0, z1.s
llvm-svn: 336789
The LASTB and LASTA instructions extract the last active element,
or element after the last active, from the source vector.
The added variants are:
Scalar:
last(a|b) w0, p0, z0.b
last(a|b) w0, p0, z0.h
last(a|b) w0, p0, z0.s
last(a|b) x0, p0, z0.d
SIMD & FP Scalar:
last(a|b) b0, p0, z0.b
last(a|b) h0, p0, z0.h
last(a|b) s0, p0, z0.s
last(a|b) d0, p0, z0.d
The CLASTB and CLASTA conditionally extract the last or element after
the last active element from the source vector.
The added variants are:
Scalar:
clast(a|b) w0, p0, w0, z0.b
clast(a|b) w0, p0, w0, z0.h
clast(a|b) w0, p0, w0, z0.s
clast(a|b) x0, p0, x0, z0.d
SIMD & FP Scalar:
clast(a|b) b0, p0, b0, z0.b
clast(a|b) h0, p0, h0, z0.h
clast(a|b) s0, p0, s0, z0.s
clast(a|b) d0, p0, d0, z0.d
Vector:
clast(a|b) z0.b, p0, z0.b, z1.b
clast(a|b) z0.h, p0, z0.h, z1.h
clast(a|b) z0.s, p0, z0.s, z1.s
clast(a|b) z0.d, p0, z0.d, z1.d
Please refer to the architecture specification for more details on
the semantics of the added instructions.
llvm-svn: 336783
This patch adds support for the following instructions:
CLS (Count Leading Sign bits)
CLZ (Count Leading Zeros)
CNT (Count non-zero bits)
CNOT (Logically invert boolean condition in vector)
NOT (Bitwise invert vector)
FABS (Floating-point absolute value)
FNEG (Floating-point negate)
All operations are predicated and unary, e.g.
clz z0.s, p0/m, z1.s
- CLS, CLZ, CNT, CNOT and NOT have variants for 8, 16, 32
and 64 bit elements.
- FABS and FNEG have variants for 16, 32 and 64 bit elements.
llvm-svn: 336677
This patch adds support for the following instructions:
CNTB CNTH - Determine the number of active elements implied by
CNTW CNTD the named predicate constant, multiplied by an
immediate, e.g.
cnth x0, vl8, #16
CNTP - Count active predicate elements, e.g.
cntp x0, p0, p1.b
counts the number of active elements in p1, predicated
by p0, and stores the result in x0.
llvm-svn: 336552
This patch completes support for shifts, which include:
- LSL - Logical Shift Left
- LSLR - Logical Shift Left, Reversed form
- LSR - Logical Shift Right
- LSRR - Logical Shift Right, Reversed form
- ASR - Arithmetic Shift Right
- ASRR - Arithmetic Shift Right, Reversed form
- ASRD - Arithmetic Shift Right for Divide
In the following variants:
- Predicated shift by immediate - ASR, LSL, LSR, ASRD
e.g.
asr z0.h, p0/m, z0.h, #1
(active lanes of z0 shifted by #1)
- Unpredicated shift by immediate - ASR, LSL*, LSR*
e.g.
asr z0.h, z1.h, #1
(all lanes of z1 shifted by #1, stored in z0)
- Predicated shift by vector - ASR, LSL*, LSR*
e.g.
asr z0.h, p0/m, z0.h, z1.h
(active lanes of z0 shifted by z1, stored in z0)
- Predicated shift by vector, reversed form - ASRR, LSLR, LSRR
e.g.
lslr z0.h, p0/m, z0.h, z1.h
(active lanes of z1 shifted by z0, stored in z0)
- Predicated shift left/right by wide vector - ASR, LSL, LSR
e.g.
lsl z0.h, p0/m, z0.h, z1.d
(active lanes of z0 shifted by wide elements of vector z1)
- Unpredicated shift left/right by wide vector - ASR, LSL, LSR
e.g.
lsl z0.h, z1.h, z2.d
(all lanes of z1 shifted by wide elements of z2, stored in z0)
*Variants added in previous patches.
llvm-svn: 336547
Support for SVE's TBL instruction for programmable table
lookup/permute using vector of element indices, e.g.
tbl z0.d, { z1.d }, z2.d
stores elements from z1, indexed by elements from z2, into z0.
llvm-svn: 336544
This patch adds support for:
UZP1 Concatenate even elements from two vectors
UZP2 Concatenate odd elements from two vectors
TRN1 Interleave even elements from two vectors
TRN2 Interleave odd elements from two vectors
With variants for both data and predicate vectors, e.g.
uzp1 z0.b, z1.b, z2.b
trn2 p0.s, p1.s, p2.s
llvm-svn: 336531
a deficiency in TableGen that has been addressed in r336334.
[AArch64][SVE] Asm: Support for predicated FP rounding instructions.
This patch also adds instructions for predicated FP square-root and
reciprocal exponent.
The added instructions are:
- FRINTI Round to integral value (current FPCR rounding mode)
- FRINTX Round to integral value (current FPCR rounding mode, signalling inexact)
- FRINTA Round to integral value (to nearest, with ties away from zero)
- FRINTN Round to integral value (to nearest, with ties to even)
- FRINTZ Round to integral value (toward zero)
- FRINTM Round to integral value (toward minus Infinity)
- FRINTP Round to integral value (toward plus Infinity)
- FSQRT Floating-point square root
- FRECPX Floating-point reciprocal exponent
llvm-svn: 336387
This patch also adds instructions for predicated FP square-root and
reciprocal exponent.
The added instructions are:
- FRINTI Round to integral value (current FPCR rounding mode)
- FRINTX Round to integral value (current FPCR rounding mode, signalling inexact)
- FRINTA Round to integral value (to nearest, with ties away from zero)
- FRINTN Round to integral value (to nearest, with ties to even)
- FRINTZ Round to integral value (toward zero)
- FRINTM Round to integral value (toward minus Infinity)
- FRINTP Round to integral value (toward plus Infinity)
- FSQRT Floating-point square root
- FRECPX Floating-point reciprocal exponent
llvm-svn: 336322
This patch adds both a vector and an immediate form, e.g.
- Vector form:
subr z0.h, p0/m, z0.h, z1.h
subtract active elements of z0 from z1, and store the result in z0.
- Immediate form:
subr z0.h, z0.h, #255
subtract elements of z0, and store the result in z0.
llvm-svn: 336274
SVE overloads the AArch64 PSTATE condition flags and introduces
a set of condition code aliases for the assembler. The
details are described in section 2.2 of the architecture
reference manual supplement for SVE.
In short:
SVE alias => AArch64 name
--------------------------
NONE => EQ
ANY => NE
NLAST => HS
LAST => LO
FIRST => MI
NFRST => PL
PMORE => HI
PLAST => LS
TCONT => GE
TSTOP => LT
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48869
llvm-svn: 336245
Unpredicated FP-multiply of SVE vector with a vector-element given by
vector[index], for example:
fmul z0.s, z1.s, z2.s[0]
which performs an unpredicated FP-multiply of all 32-bit elements in
'z1' with the first element from 'z2'.
This patch adds restricted register classes for SVE vectors:
ZPR_3b (only z0..z7 are allowed) - for indexed vector of 16/32-bit elements.
ZPR_4b (only z0..z15 are allowed) - for indexed vector of 64-bit elements.
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48823
llvm-svn: 336205
Increment/decrement vector by multiple of predicate constraint
element count.
The variants added by this patch are:
- INCH, INCW, INC
and (saturating):
- SQINCH, SQINCW, SQINCD
- UQINCH, UQINCW, UQINCW
- SQDECH, SQINCW, SQINCD
- UQDECH, UQINCW, UQINCW
For example:
incw z0.s, all, mul #4
llvm-svn: 336090
These patches were previously reverted as they led to
buildbot time-outs caused by large switch statement in
printAliasInstr when using UBSan and O3. The issue has
been addressed with a workaround (r335525).
llvm-svn: 336079