Summary:
Unlike normal calls, call_indirects have immediate arguments that
caused a MachineVerifier failure without a small tweak to loosen the
verifier's requirements for variadicOpsAreDefs instructions.
One nice thing about the new call_indirects is that they do not need
to participate in the PCALL_INDIRECT mechanism because their post-isel
hook handles moving the function pointer argument and adding the flags
and typeindex arguments itself.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74191
This reverts commit 649aba93a2, now that
the approach started there has been shown to be workable in the patch
series culminating in https://reviews.llvm.org/D74192.
Fixes https://bugs.llvm.org/show_bug.cgi?id=44922 (caused by 4698bf145d)
ThreadThroughTwoBasicBlocks assumes PredBBBranch is conditional. The following code can segfault.
AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
ValueMapping);
We can also allow unconditional PredBB, but the produced code is not
better.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D74747
Summary:
This patch adds a new MVE intrinsics family, `vbrsrq`: vector bit
reverse and shift right. The intrinsics are compiled into the VBRSR
instruction. Two new LLVM IR intrinsics were also added: arm.mve.vbrsr
and arm.mve.vbrsr.predicated.
Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74721
The index of an ExtractElementInst is not guaranteed to be a
ConstantInt. It can be any integer value. Check explicitly for
ConstantInts.
The new test cases illustrate scenarios where we crash without
this patch. I've also added another test case to check the matching
of extractelement vector ops works.
Reviewers: RKSimon, ABataev, dtemirbulatov, vporpo
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D74758
When simplifying demanded bits, we currently only report the
instruction on which SimplifyDemandedBits was called as changed.
However, this is a recursive call, and the actually modified
instruction will usually be further up the chain. Additionally,
all the intermediate instructions should also be revisited,
as additional combines may be possible after the demanded bits
simplification. We fix this by explicitly adding them back to the
worklist.
Differential Revision: https://reviews.llvm.org/D72944
The select-of-cttz transform can currently duplicate cttz intrinsics
and zext/trunc ops. The cause is that it unnecessarily duplicates
the intrinsic and the zext/trunc when setting the "undef_on_zero"
flag to false. However, it's always legal to set the flag from true
to false, so we can make this replacement even if there are extra users.
Differential Revision: https://reviews.llvm.org/D74685
Create preprocessor defines for callee saved floating-point register spill
slots, vector register spill slots, and both 32-bit and 64-bit general
purpose register spill slots. This is an NFC refactor to prepare for
adding ABI compliant callee saves and restores for AIX.
Fix for https://bugs.llvm.org/show_bug.cgi?id=44754. We already have
a fold that converts icmp (and (ashr X, C3), C2), C1 into
icmp (and C2'), C1', but it imposed overly strict requirements on the
transform.
Relax this by checking that both C2 and C1 don't shift out bits
(in a signed sense) when forming the new constants.
Alive proofs (https://rise4fun.com/Alive/PTz0):
Name: ashr_legal
Pre: ((C2 << C3) >> C3) == C2 && ((C1 << C3) >> C3) == C1
%a = ashr i16 %x, C3
%b = and i16 %a, C2
%c = icmp i16 %b, C1
=>
%d = and i16 %x, C2 << C3
%c = icmp i16 %d, C1 << C3
Name: ashr_shiftout_eq
Pre: ((C2 << C3) >> C3) == C2 && ((C1 << C3) >> C3) != C1
%a = ashr i16 %x, C3
%b = and i16 %a, C2
%c = icmp eq i16 %b, C1
=>
%c = false
Note that >> corresponds to ashr here. The case of an equality
comparison has some special handling in this transform, because
it will form to a true/false result if the condition on the comparison
constant it violated.
Differential Revision: https://reviews.llvm.org/D74294
Implement TargetLowering callback mayBeEmittedAsTailCall for riscv in CodeGenPrepare,
which will duplicate return instructions to enable tailcall optimization.
Differential Revision: https://reviews.llvm.org/D73699
Summary:
Making `Scale` a `TypeSize` in AArch64InstrInfo::getMemOpInfo,
has the effect that all places where this information is used
(notably, TargetInstrInfo::getMemOperandWithOffset) will need
to consider Scale - and derived, Offset - possibly being scalable.
This patch adds a new operand `bool &OffsetIsScalable` to
TargetInstrInfo::getMemOperandWithOffset and fixes up all
the places where this function is used, to consider the
offset possibly being scalable.
In most cases, this means bailing out because the algorithm does not
(or cannot) support scalable offsets in places where it does some
form of alias checking for example.
Reviewers: rovka, efriedma, kristof.beyls
Reviewed By: efriedma
Subscribers: wuzish, kerbowa, MatzeB, arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, javed.absar, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72758
Summary:
Codegen and tests for thread-local storage.
This implements only the general dynamic model due to limitations in nld 2.26.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D74718
This patch upstreams support for the AArch64 Armv8-A cpu Cortex-A34.
In detail adding support for:
- mcpu option in clang
- AArch64 Target Features in clang
- llvm AArch64 TargetParser definitions
details of the cpu can be found here:
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a34
Reviewers: SjoerdMeijer
Reviewed By: SjoerdMeijer
Subscribers: SjoerdMeijer, kristof.beyls, hiraditya, cfe-commits,
llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74483
Change-Id: Ida101fc544ca183a0a0e61a1277c8957855fde0b
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
Backends should fold the subtraction into the comparison, but not all
seem to. Moreover, on targets where pointers are not integers, such as
CHERI, an integer subtraction is not appropriate. Instead we should just
compare the two pointers directly, as this should work everywhere and
potentially generate more efficient code.
Reviewers: bogner, lebedev.ri, efriedma, t.p.northover, uweigand, sunfish
Reviewed By: lebedev.ri
Subscribers: dschuff, sbc100, arichardson, jgravelle-google, hiraditya, aheejin, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74454
Summary:
These are in some sense the inverse of vmovl[bt]q: they take a vector
of n wide elements and truncate each to half its width. So they only
write half a vector's worth of output data, and therefore they also
take an 'inactive' parameter to provide the other half of the data in
the output vector. So vmovnb overwrites the even lanes of 'inactive'
with the narrowed values from the main input, and vmovnt overwrites
the odd lanes.
LLVM had existing codegen which generates these MVE instructions in
response to IR that takes two vectors of wide elements, or two vectors
of narrow ones. But in this case, we have one vector of each. So my
clang codegen strategy is to narrow the input vector of wide elements
by simply reinterpreting it as the output type, and then we have two
narrow vectors and can represent the operation as a vector shuffle
that interleaves lanes from both of them.
Even so, not all the cases I needed ended up being selected as a
single MVE instruction, so I've added a couple more patterns that spot
combinations of the 'MVEvmovn' and 'ARMvrev32' SDNodes which can be
generated as a VMOVN instruction with operands swapped.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74337
Summary:
These intrinsics take a vector of 2n elements, and return a vector of
n wider elements obtained by sign- or zero-extending every other
element of the input vector. They're represented in IR as a
shufflevector that extracts the odd or even elements of the input,
followed by a sext or zext.
Existing LLVM codegen already matches this pattern and generates the
VMOVLB instruction (which widens the even-index input lanes). But no
existing isel rule was generating VMOVLT, so I've added some. However,
the new rules currently only work in little-endian MVE, because the
pattern they expect from isel lowering includes a bitconvert which
doesn't have the right semantics in big-endian.
The output of one existing codegen test is improved by those new
rules.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74336
Summary:
When we start putting instances of `ARMVectorRegCast` in complex isel
patterns, it will be awkward that they're often turned into the more
standard `bitconvert` in little-endian mode. We'd rather not have to
write separate isel patterns for the two endiannesses, matching
different but equivalent cast operations.
This change aims to fix that awkwardness in advance, by turning the
Tablegen record `ARMVectorRegCast` from a simple `SDNode` instance
into a `PatFrags` that can match either kind of cast – with a
predicate that prevents it matching a bitconvert in the big-endian
case, where bitconvert isn't semantically identical.
No existing code generation should be affected by this change, but it
will enable the patterns introduced by D74336 to work in both
endiannesses.
Reviewers: dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74716
Summary:
vclzq maps nicely to the existing target-independent @llvm.ctlz IR
intrinsic. But vclsq ('count leading sign bits') has no corresponding
target-independent intrinsic, so I've made up @llvm.arm.mve.vcls.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74335
Summary:
This adds the unpredicated forms of six different MVE intrinsics which
all round a vector of floating-point numbers to integer values,
leaving them still in FP format, differing only in rounding mode and
exception settings.
Five of them map to existing target-independent intrinsics in LLVM IR,
such as @llvm.trunc and @llvm.rint. The sixth, mapping to the `vrintn`
instruction, is done by inventing a target-specific intrinsic.
(`vrintn` behaves the same as `vrintx` in terms of the output value:
the side effects on the FPSCR flags are the only difference between
the two. But ACLE specifies separate user-callable intrinsics for the
two, so the side effects matter enough to make sure we generate the
right one of the two instructions in each case.)
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74333
This patch adds a simplification if an OR weakens the overflow condition
for umul.with.overflow by treating any non-zero result as overflow. In that
case, we overflow if both umul.with.overflow operands are != 0, as in that
case the result can only be 0, iff the multiplication overflows.
Code like this is generated by code using __builtin_mul_overflow with
negative integer constants, e.g.
bool test(unsigned long long v, unsigned long long *res) {
return __builtin_mul_overflow(v, -4775807LL, res);
}
```
----------------------------------------
Name: D74141
%res = umul_overflow {i8, i1} %a, %b
%mul = extractvalue {i8, i1} %res, 0
%overflow = extractvalue {i8, i1} %res, 1
%cmp = icmp ne %mul, 0
%ret = or i1 %overflow, %cmp
ret i1 %ret
=>
%t0 = icmp ne i8 %a, 0
%t1 = icmp ne i8 %b, 0
%ret = and i1 %t0, %t1
ret i1 %ret
%res = umul_overflow {i8, i1} %a, %b
%mul = extractvalue {i8, i1} %res, 0
%cmp = icmp ne %mul, 0
%overflow = extractvalue {i8, i1} %res, 1
Done: 1
Optimization is correct!
```
Reviewers: nikic, lebedev.ri, spatel, Bigcheese, dexonsmith, aemerson
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D74141
The CheckAtomic module performs two tests to determine if passing
'-latomic' to the linker is required: one for 64-bit atomics, and
another for non-64-bit atomics. Include the missing check for 64-bit
atomics.
Reviewers: beanz, compnerd
Reviewed By: beanz, compnerd
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69444
This helps this transform occur earlier so we can fold the not
with setcc. If we delay it until after type legalization we might
have introduced instructions to widen the mask if the vselect was
widened. This can prevent the not from making it to the setcc.
We could of course add more DAG combines to handle that, but
moving this earlier is easier.
Summary:
Depends on https://reviews.llvm.org/D71899.
The third in a series of patches that ports the LLVM coroutines passes
to the new pass manager infrastructure. This patch implements 'coro-elide'.
The new pass manager infrastructure does not implicitly repeat CGSCC
pass pipelines when a function is devirtualized, and so the tests
for the new pass manager that rely on that behavior now explicitly
specify `repeat<2>`.
Reviewers: GorNishanov, lewissbaker, chandlerc, jdoerfert, junparser, deadalnix, wenlei
Reviewed By: wenlei
Subscribers: wenlei, EricWF, Prazek, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71900
Summary:
This patch has four dependencies:
1. The first in this series of patches that implement coroutine passes in the
new pass manager: https://reviews.llvm.org/D71898.
2. A patch that introduces an API for CGSCC passes to add new reference
edges to a `LazyCallGraph`, `updateCGAndAnalysisManagerForCGSCCPass`:
https://reviews.llvm.org/D72025.
3. A patch that introduces a `CallGraphUpdater` helper class that is
capable of mutating internal `LazyCallGraph` state in order to insert
new function nodes into a specific SCC: https://reviews.llvm.org/D70927.
4. And finally, a small edge case fix for updating `LazyCallGraph` that
patch 3 above happens to run into: https://reviews.llvm.org/D72226.
This is the second in a series of patches that ports the LLVM coroutines
passes to the new pass manager infrastructure. This patch implements
'coro-split'.
Some notes:
* Using the new CGSCC pass manager resulted in IR being printed in the
reverse order in some tests. To prevent FileCheck checks from failing due
to these reversed orders, this patch splits up test files that test
multiple different coroutine functions: specifically
coro-alloc-with-param.ll, coro-split-eh.ll, and coro-eh-aware-edge-split.ll.
* CoroSplit.cpp contained 2 overloads of `splitCoroutine`, one of which
dispatched to the other based on the coroutine ABI being used (C++20
switch-based versus Swift returned-continuation-based). I found this
confusing, especially with the additional branching based on `CallGraph`
vs. `LazyCallGraph`, so I removed the ABI-checking overload of
`splitCoroutine`.
Reviewers: GorNishanov, lewissbaker, chandlerc, jdoerfert, junparser, deadalnix, wenlei
Reviewed By: wenlei
Subscribers: wenlei, qcolombet, EricWF, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71899