Summary:
We would fail to resolve (and thus display the value of) any
templated type which contained a template template argument even
though we don't really use template arguments.
This patch adds minimal support for template template arguments,
but I doubt we need any more than that.
Reviewers: clayborg, jingham
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D44613
llvm-svn: 328984
When importing C++ methods into clang AST nodes from the DWARF symbol
table, preserve the DW_AT_linkage_name and use it as the linker
("asm") name for the symbol.
Concretely, this enables `expression` to call into names that use the
GNU `abi_tag` extension, and enables lldb to call into code using
std::string or std::list from recent versions of libstdc++. See
https://bugs.llvm.org/show_bug.cgi?id=35310 . It also seems broadly
more robust than relying on the DWARF->clang->codegen pipeline to
roundtrip properly, but I'm not immediately aware of any other cases
in which it makes a difference.
Patch by Nelson Elhage!
Differential Revision: https://reviews.llvm.org/D40283
llvm-svn: 328658
Instead of applying the sledgehammer of refusing to insert any
C++ symbol in the ASTContext, try to validate the decl if what
we have is an operator. There was other code in lldb which was
responsible for this, just not really exposed (or used) in this
codepath. Also, add a better/more comprehensive test.
<rdar://problem/35645893>
llvm-svn: 328025
The difference between this and the previous patch is that now we use
ELF physical addresses only for loading objects into the target (and the
rest of the module load address logic still uses virtual addresses).
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: llvm-commits, arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>.
llvm-svn: 327970
This reverts commit r326261 as it introduces inconsistencies in the
handling of load addresses for ObjectFileELF -- some parts of the class
use physical addresses, and some use virtual. This has manifested itself
as us not being able to set the load address of the vdso "module" on
android.
llvm-svn: 326367
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>
llvm-svn: 326261
Before this patch, LLDB was not able to evaluate expressions that
resulted in a value with a typeof- or decltype-type. This patch fixes
that.
Before:
(lldb) p int i; __typeof__(i) j = 1; j
(typeof (i)) $0 =
After:
(lldb) p int i; __typeof__(i) j = 1; j
(typeof (i)) $0 = 1
Differential revision: https://reviews.llvm.org/D43471
rdar://37461520
llvm-svn: 325568
Summary:
We sometimes need to write to the object file we've mapped into memory,
generally to apply relocations to debug info sections. We've had that
ability before, but with the introduction of DataBufferLLVM, we have
lost it, as the underlying llvm class (MemoryBuffer) only supports
read-only mappings.
This switches DataBufferLLVM to use the new llvm::WritableMemoryBuffer
class as a back-end, as this one guarantees to return a writable buffer.
This removes the need for the "Private" flag to the DataBufferLLVM
creation functions, as it was really used to mean "writable". The LLVM
function also does not have the NullTerminate flag, so I've modified our
clients to not require this feature and removed that flag as well.
Reviewers: zturner, clayborg, jingham
Subscribers: emaste, aprantl, arichardson, krytarowski, lldb-commits
Differential Revision: https://reviews.llvm.org/D40079
llvm-svn: 321255
Summary:
These two functions were calling each other, while handling different
branches of the if(IsInMemory()). This had a reason at some point in the
past, but right now it's just confusing.
I resolve this by removing the MemoryMapSectionData function and
inlining the !IsInMemory branch into ReadSectionData. There isn't
anything mmap-related in this function anyway, as the decision whether
to mmap is handled at a higher level.
This is a preparatory step to make ObjectFileELF be able to decompress
compressed sections (I want to make sure that all calls reading section
data are routed through a single piece of code).
Reviewers: clayborg
Subscribers: emaste, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D41169
llvm-svn: 320705
Summary:
Variable::GetValuesForVariableExpressionPath was passing an
uninitialised value for the final_task_on_target argument. On my
compiler/optimization level combo, the final_task_on_target happened to
contain "dereference" in some circumstances, which produced hilarious
results. The same is true for other arguments to the
GetValueForExpressionPath call.
The correct behavior here seems to be to just omit the arguments
altogether and let the default behavior take place.
Reviewers: jingham
Subscribers: mehdi_amini, lldb-commits
Differential Revision: https://reviews.llvm.org/D40557
llvm-svn: 320021
Summary:
llvm::APSInt(0) asserts because it creates an int with bit-width 0 and
not (as I thought) a value 0.
Theoretically it should be sufficient to change this to APSInt(1), as
the intention there was that the value of the first argument should be
ignored if the type is invalid, but that would look dodgy.
Instead, I use llvm::Optional to denote an invalid value and use a
special struct instead of a std::pair, to reduce typing and increase
clarity.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D40615
llvm-svn: 319414
The rationale here is that ArchSpec is used throughout the codebase,
including in places which should not depend on the rest of the code in
the Core module.
This commit touches many files, but most of it is just renaming of
#include lines. In a couple of cases, I removed the #include ArchSpec
line altogether, as the file was not using it. In one or two places,
this necessitated adding other #includes like lldb-private-defines.h.
llvm-svn: 318048
Summary:
Despite it's name, GetTemplateArgument was only really working for Type
template arguments. This adds the ability to retrieve integral arguments
as well (which I've needed for the std::bitset data formatter).
I've done this by splitting the function into three pieces. The idea is
that one first calls GetTemplateArgumentKind (first function) to
determine the what kind of a parameter this is. Based on that, one can
then use specialized functions to retrieve the correct value. Currently,
I only implement two of these: GetTypeTemplateArgument and
GetIntegralTemplateArgument.
Reviewers: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D39844
llvm-svn: 318040
FreeBSD kernel modules are actually relocatable (.o) ELF files and this
previously caused some issues for LLDB. This change addresses these when
using lldb to symbolicate FreeBSD kernel backtraces.
The major problems:
- Relocations were not being applied to the DWARF debug info despite
there being code to do this. Several issues prevented it from working:
- Relocations are computed at the same time as the symbol table, but
in the case of split debug files, symbol table parsing always
redirects to the primary object file, meaning that relocations would
never be applied in the debug file.
- There's actually no guarantee that the symbol table has been parsed
yet when trying to parse debug information.
- When actually applying relocations, it will segfault because the
object files are not mapped with MAP_PRIVATE and PROT_WRITE.
- LLDB returned invalid results when performing ordinary address-to-
symbol resolution. It turned out that the addresses specified in the
section headers were all 0, so LLDB believed all the sections had
overlapping "file addresses" and would sometimes return a symbol from
the wrong section.
Patch by Brian Koropoff
Differential Revision: https://reviews.llvm.org/D38142
llvm-svn: 314672
This setting can be enabled like this at the target level:
(lldb) settings set target.experimental.use-modern-type-lookup true
This causes several new behaviors in the Clang expression parser:
- It completely disables use of ClangASTImporter. None are created
at all, and all users of it are now conditionalized on its
presence.
- It instead constructs a per-expression ExternalASTMerger, which
exists inside Clang and contains much of the type completion
logic that hitherto lived in ExternalASTSource,
ClangExpressionDeclMap, and ClangASTImporter.
- The expression parser uses this Merger as a backend for copying
and completing types.
- It also constructs a persistent ExternalASTMerger which is
connected to the Target's persistent AST context.
This is a major chunk of LLDB functionality moved into Clang. It
can be tested in two ways:
1. For an individual debug session, enable the setting before
running a target.
2. For the testsuite, change the option to be default-true. This
is done in Target.cpp's g_experimental_properties. The
testsuite is not yet clean with this, so I have not committed
that switch.
I have filed a Bugzilla for extending the testsuite to allow
custom settings for all tests:
https://bugs.llvm.org/show_bug.cgi?id=34771
I have also filed a Bugzilla for fixing the remaining testsuite
failures with this setting enabled:
https://bugs.llvm.org/show_bug.cgi?id=34772
llvm-svn: 314458
Summary:
The DWP (DWARF package) format is used to pack multiple dwo files
generated by split-dwarf into a single ELF file to make distributing
them easier. It is part of the DWARFv5 spec and can be generated by
dwp or llvm-dwp from a set of dwo files.
Caviats:
* Only the new version of the dwp format is supported (v2 in GNU
numbering schema and v5 in the DWARF spec). The old version (v1) is
already deprecated but binutils 2.24 still generates that one.
* Combining DWP files with module debugging is not yet supported.
Subscribers: emaste, mgorny, aprantl
Differential Revision: https://reviews.llvm.org/D36062
llvm-svn: 311775
It was completly unused and broke the part of the encapsulation that
common code shouldn't depend on specific plugins or language specific
features.
llvm-svn: 311000
s_source_map in ClangExternalASTSourceCommon.cpp is unguarded
and therefore can break in multithreaded conditions. This can
cause crashes in particular if multiple targets are being set
up at once.
This patch wraps s_source_map in a function that ensures
exclusivity, and makes every user of it use that function
instead.
<rdar://problem/33429774> lldb crashes after "resume_off"
Differential Revision: https://reviews.llvm.org/D35083
llvm-svn: 308993
Summary:
The classes have no dependencies, and they are used both by lldb and
lldb-server, so it makes sense for them to live in the lowest layers.
Reviewers: zturner, jingham
Subscribers: emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D34746
llvm-svn: 306682
some methods in the ABI need a Process to do their work.
Instead of passing it in as a one-off argument to those
methods, this patch puts it in the base class and the methods
can retrieve if it needed.
Note that ABI's are sometimes built without a Process
(e.g. SBTarget::GetStackRedZoneSize) so it's entirely
possible that the process weak pointer will not be
able to reconsistitue into a strong pointer.
<rdar://problem/32526754>
llvm-svn: 306633
Summary:
instead of using a boolean to differentiate between the two section
types, use an enum to make the intent clearer.
I also remove the RegisterKind argument from the constructor, as this
can be deduced from the Type argument.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D34681
llvm-svn: 306521
Summary:
This is a beefed-up version of D33504, which adds support for dwarf 4
debug_frame section format.
The main difference here is that the decision whether to use eh_frame or
debug_frame is done on a per-function basis instead of per-object file.
This is necessary because one module can contain both sections (for
example, the start files added by the linker will typically pull in
eh_frame), but we want to be able to access both, for maximum
information.
I also add unit test for parsing various CFI formats (eh_frame,
debug_frame v3 and debug_frame v4).
Reviewers: jasonmolenda, clayborg
Subscribers: mgorny, aprantl, abidh, lldb-commits, tatyana-krasnukha
Differential Revision: https://reviews.llvm.org/D34613
llvm-svn: 306397
When parsing types originating in modules, it is possible to encounter AttributedTypes
(such as the type generated for NSString *_Nonnull). Some of LLDB's ClangASTContext
methods deal with them; others do not. In particular, one function that did not was
GetTypeInfo, causing TestObjCNewSyntax to fail.
This fixes that, treating AttributedType as essentially transparent and getting the
information for the modified type.
In addition, however, TestObjCNewSyntax is a monolithic test that verifies a bunch of
different things, all of which can break independently of one another. I broke it
apart into smaller tests so that we get more precise failures when something (like
this) breaks.
Differential Revision: https://reviews.llvm.org/D33812
llvm-svn: 304510
This reverts commit r303847 as it introduces a number of regressions.
Investigation has showed that we are parsing the CIE entries in the
debug_frame section incorrectly -- we are parsing them the same way as
eh_frame, but the entries in debug_frame have a couple of extra entries
which have not been taken into account.
llvm-svn: 303854
There are some differences between eh_frame and debug_frame formats that
are not considered by DWARFCallFrameInfo::GetFDEIndex. An FDE entry
contains CIE_pointer in debug_frame in same place as cie_id in eh_frame.
As described in dwarf standard (section 6.4.1), CIE_pointer is an
"offset into the .debug_frame section". So, variable cie_offset should
be equal cie_id for debug_frame.
FDE entries with zeroth CIE pointer (which is actually placed in cie_id
variable) shouldn't be ignored also.
I have also added a little change which allow to use debug_info section
when eh_frame is absent. This case really can take place on some platforms.
Patch from tatyana-krasnukha.
https://reviews.llvm.org/D33504
llvm-svn: 303847
When it resolves symbol-only variables, the expression parser
currently looks only in the global module list. It should prefer
the current module.
I've fixed that behavior by making it search the current module
first, and only search globally if it finds nothing. I've also
added a test case.
After review, I moved the core of the lookup algorithm into
SymbolContext for use by other code that needs it.
Thanks to Greg Clayton and Pavel Labath for their help.
Differential Revision: https://reviews.llvm.org/D33083
llvm-svn: 303223
ptr_refs exposed a problem in ClangASTContext's implementation: it
uses an accessor to downcast a QualType to an
ObjCObjectPointerType, but the accessor is not fully general.
getAs() is the safer way to go.
I've added a test case that uses ptr_refs in a way that would
crash before the fix.
<rdar://problem/31363513>
llvm-svn: 303110
The Timer destructor would grab a global mutex in order to update
execution time. Add a class to define a category once, statically; the
class adds itself to an atomic singly linked list, and thus subsequent
updates only need to use an atomic rather than grab a lock and perform a
hashtable lookup.
Differential Revision: https://reviews.llvm.org/D32823
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 303058
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
Templates can end in parameter packs, like this
template <class T...> struct MyStruct
{ /*...*/ };
LLDB does not currently support these parameter packs;
it does not emit them into the template argument list
at all. This causes problems when you specialize, e.g.:
template <> struct MyStruct<int>
{ /*...*/ };
template <> struct MyStruct<int, int> : MyStruct<int>
{ /*...*/ };
LLDB generates two template specializations, each with
no template arguments, and then when they are imported
by the ASTImporter into a parser's AST context we get a
single specialization that inherits from itself,
causing Clang's record layout mechanism to smash its
stack.
This patch fixes the problem for classes and adds
tests. The tests for functions fail because Clang's
ASTImporter can't import them at the moment, so I've
xfailed that test.
Differential Revision: https://reviews.llvm.org/D33025
llvm-svn: 302833
Summary: It seems that if we have no context, then it can't possibly be a method. Check that first.
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: labath, lldb-commits
Differential Revision: https://reviews.llvm.org/D32708
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 302008
Summary:
UniqueCStringMap "sorts" the entries for fast lookup, but really it only cares about uniqueness. ConstString can be compared by pointer alone, rather than with strcmp, resulting in much faster comparisons. Change the interface to take ConstString instead, and propagate use of the type to the callers where appropriate.
Reviewers: #lldb, clayborg
Reviewed By: clayborg
Subscribers: labath, jasonmolenda, lldb-commits
Differential Revision: https://reviews.llvm.org/D32316
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 301908
Loading a shared library can require a large amount of work; rather than do that serially for each library,
this patch will allow parallelization of the symbols and debug info name indexes.
From scott.smith@purestorage.comhttps://reviews.llvm.org/D32598
llvm-svn: 301609
This code really doesn't make any sense: there is only ever one InputKind here.
Plus, this is an incomplete and out-of-date copy-paste of some Clang code. This
really ought to be revisited, but this change should get the bots green again.
llvm-svn: 301483
This #include was the cause of a dependency from Symbol ->
DataFormatters. However, nothing from the header was being
used anyway, so we can just remove it with no adverse effects.
This reduces the overall cycle count from 44 to 43.
llvm-svn: 298541
If you have code before the first line table entry when debugging with .o files on macOS, the
LineTable entry search code was assigning all that code to the first line table entry. Don't do that.
<rdar://problem/31095765>
llvm-svn: 298289