This patch allows lowering of PIC addresses by using PC-relative
addressing for DSO-local symbols and accessing the address through the
global offset table for non-DSO-local symbols.
Differential Revision: https://reviews.llvm.org/D55303
llvm-svn: 363058
This validates and lowers arguments to inline asm nodes which have the
constraints I, J & K, with the following semantics (equivalent to GCC):
I: Any 12-bit signed immediate.
J: Immediate integer zero only.
K: Any 5-bit unsigned immediate.
Differential Revision: https://reviews.llvm.org/D54093
llvm-svn: 363054
This introduces a new decoding table for MVE instructions, and starts
by adding the family of scalar shift instructions that are part of the
MVE architecture extension: saturating shifts within a single GPR, and
long shifts across a pair of GPRs (both saturating and normal).
Some of these shift instructions have only 3-bit register fields in
the encoding, with the low bit fixed. So they can only address an odd
or even numbered GPR (depending on the operand), and therefore I add
two new register classes, GPREven and GPROdd.
Differential Revision: https://reviews.llvm.org/D62668
Change-Id: Iad95d5f83d26aef70c674027a184a6b1e0098d33
llvm-svn: 363051
For lld, pass in Config->Timestamp (which is set based on lld's
/timestamp: and /Brepro flags). Since the writeWindowsResourceCOFF()
data is only used in-memory by LLD and the obj's timestamp isn't used
for anything in the output, this doesn't change behavior.
For llvm-cvtres, add an optional /timestamp: parameter, and use the
current behavior of calling time() if the parameter is not passed in.
This doesn't really change observable behavior (unless someone passes
/timestamp: to llvm-cvtres, which wasn't possible before), but it
removes the last unqualified call to time() from llvm/lib, which seems
like a good thing.
Differential Revision: https://reviews.llvm.org/D63116
llvm-svn: 363050
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
-o is in the documentation, but not in the llvm-dwarfdump help text.
This patch adds it by inverting the -o and --out-file aliasing. It also
removes --out-file from the documentation, since we don't really want
people to be using this switch in practice.
Reviewed by: aprantl, JDevlieghere, dblaikie
Differential Revision: https://reviews.llvm.org/D63013
llvm-svn: 363044
Allow using both custom numeric and string values for Link field of the
dynamic and regular symbol tables.
Differential revision: https://reviews.llvm.org/D63077
llvm-svn: 363042
This adds support for the new family of conditional selection /
increment / negation instructions; the low-overhead branch
instructions (e.g. BF, WLS, DLS); the CLRM instruction to zero a whole
list of registers at once; the new VMRS/VMSR and VLDR/VSTR
instructions to get data in and out of 8.1-M system registers,
particularly including the new VPR register used by MVE vector
predication.
To support this, we also add a register name 'zr' (used by the CSEL
family to force one of the inputs to the constant 0), and operand
types for lists of registers that are also allowed to include APSR or
VPR (used by CLRM). The VLDR/VSTR instructions also need a new
addressing mode.
The low-overhead branch instructions exist in their own separate
architecture extension, which we treat as enabled by default, but you
can say -mattr=-lob or equivalent to turn it off.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Reviewed By: samparker
Subscribers: miyuki, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62667
llvm-svn: 363039
This patch changes how LLVM handles the accumulator/start value
in the reduction, by never ignoring it regardless of the presence of
fast-math flags on callsites. This change introduces the following
new intrinsics to replace the existing ones:
llvm.experimental.vector.reduce.fadd -> llvm.experimental.vector.reduce.v2.fadd
llvm.experimental.vector.reduce.fmul -> llvm.experimental.vector.reduce.v2.fmul
and adds functionality to auto-upgrade existing LLVM IR and bitcode.
Reviewers: RKSimon, greened, dmgreen, nikic, simoll, aemerson
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D60261
llvm-svn: 363035
This makes the interface simpler and more consistent with the interface for
.dSYM files and fixes a bug where llvm-symbolizer would not read the dwp if
it was asked to symbolize data before symbolizing code.
Differential Revision: https://reviews.llvm.org/D63114
llvm-svn: 363025
And share some code with lld-link.
While here, also add a FIXME about PR42180 and merge r360150 to llvm-lib.
Differential Revision: https://reviews.llvm.org/D63021
llvm-svn: 363016
As pointed out by Nikita in review, undef and poison need to be handled separately. Since we're no longer expecting any test improvements - just fixes for miscompiles - update the tests to bypass the existing undef check.
llvm-svn: 363002
As shown in PR41279, some basic blocks (such as catchswitch) cannot be
instrumented. This patch filters out these BBs in PGO instrumentation.
It also sets the profile count to the fail-to-instrument edge, so that we
can propagate the counts in the CFG.
Differential Revision: https://reviews.llvm.org/D62700
llvm-svn: 362995
There are two interesting sub-cases here. 1) Switching IVs is legal, but only in pre-increment form. and 2) Switching IVs is legal, and so is post-increment form.
llvm-svn: 362993
If the source is undef, then just don't do anything.
This matches SelectionDAG's behaviour in SelectionDAG.cpp.
Also add a test showing that we do the right thing here.
(irtranslator-memfunc-undef.ll)
Differential Revision: https://reviews.llvm.org/D63095
llvm-svn: 362989
Flesh out a collection of tests for switching to a dead IV within LFTR, both for the current miscompile, and for some cases which we should be able to handle via simple reasoning.
llvm-svn: 362976
This was discussed as part of D62880. The basic thought is that computing BE taken count after widening should produce (on average) an equally good backedge taken count as the one before widening. Since there's only one test in the suite which is impacted by this change, and it's essentially equivelent codegen, that seems to be a reasonable assertion. This change was separated from r362971 so that if this turns out to be problematic, the triggering piece is obvious and easily revertable.
For the nestedIV example from elim-extend.ll, we end up with the following BE counts:
BEFORE: (-2 + (-1 * %innercount) + %limit)
AFTER: (-1 + (sext i32 (-1 + %limit) to i64) + (-1 * (sext i32 %innercount to i64))<nsw>)
Note that before is an i32 type, and the after is an i64. Truncating the i64 produces the i32.
llvm-svn: 362975
This was found during HTM cleanup.
Adding a test for builtin_ttest would expose following issue.
*** Bad machine code: Illegal physical register for instruction ***
- function: test10
- basic block: %bb.0 entry (0xf0e57497b58)
- instruction: %5:crrc0 = TABORTWCI 0, $zero, 0
- operand 2: $zero
$zero is not a GPRC register.
LLVM ERROR: Found 1 machine code errors.
Differential Revision: https://reviews.llvm.org/D63079
llvm-svn: 362974
Summary:
When llvm-objcopy sorts sections during finalization, it only sorts based on the offset, which can cause the group section to come after the sections it contains. This causes link failures when using gold to link objects created by llvm-objcopy.
Fix this for now by copying GNU objcopy's behavior of placing SHT_GROUP sections first. In the future, we may want to remove this sorting entirely to more closely preserve the input file layout.
This fixes https://bugs.llvm.org/show_bug.cgi?id=42052.
Reviewers: jakehehrlich, jhenderson, MaskRay, espindola, alexshap
Reviewed By: MaskRay
Subscribers: phuongtrang148993, emaste, arichardson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62620
llvm-svn: 362973
The ELF gABI requires the tag values of DT_REL, DT_RELA and DT_JMPREL to be
treated as virtual addresses. They were treated as offsets. Fixes PR41832.
Differential Revision: https://reviews.llvm.org/D62972
llvm-svn: 362969
Bottleneck Analysis is one of the many views available in llvm-mca. Therefore,
it should be enabled when flag -all-views is passed in input to the tool.
llvm-svn: 362964
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.
This re-enables it for FastISel with the corresponding fix.
This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.
FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.
This fix moves the replacement of registers before the emission of
copies for the live-ins.
The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).
A few tests are affected by this:
* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed
Differential Revision: https://reviews.llvm.org/D62361
llvm-svn: 362963
These caused a build failure because I managed not to notice they
depended on a later unpushed commit in my current stack. Sorry about
that.
llvm-svn: 362956
This should have been part of r362953, but I had a finger-trouble
incident and committed the old rather than new version of the patch.
Sorry.
llvm-svn: 362955
This adds support for the new family of conditional selection /
increment / negation instructions; the low-overhead branch
instructions (e.g. BF, WLS, DLS); the CLRM instruction to zero a whole
list of registers at once; the new VMRS/VMSR and VLDR/VSTR
instructions to get data in and out of 8.1-M system registers,
particularly including the new VPR register used by MVE vector
predication.
To support this, we also add a register name 'zr' (used by the CSEL
family to force one of the inputs to the constant 0), and operand
types for lists of registers that are also allowed to include APSR or
VPR (used by CLRM). The VLDR/VSTR instructions also need some new
addressing modes.
The low-overhead branch instructions exist in their own separate
architecture extension, which we treat as enabled by default, but you
can say -mattr=-lob or equivalent to turn it off.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Reviewed By: samparker
Subscribers: miyuki, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62667
llvm-svn: 362953
Summary: Dependence Analysis performs static checks to confirm validity
of delinearization. These checks often fail for 64-bit targets due to
type conversions and integer wrapping that prevent simplification of the
SCEV expressions. These checks would also fail at compile-time if the
lower bound of the loops are compile-time unknown.
Author: bmahjour
Reviewer: Meinersbur, jdoerfert, kbarton, dmgreen, fhahn
Reviewed By: Meinersbur, jdoerfert, dmgreen
Subscribers: fhahn, hiraditya, javed.absar, llvm-commits, Whitney,
etiotto
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D62610
llvm-svn: 362952
This commit reapplies r359426 (which was reverted in r360301 due to
performance problems) and rolls in D61940 to address the performance problem.
I've combined the two to avoid creating a span of slow-performance, and to
ease reverting if more problems crop up.
The summary of D61940: This patch removes the "ChangingRegs" facility in
DbgEntityHistoryCalculator, as its overapproximate nature can produce incorrect
variable locations. An unchanging register doesn't mean a variable doesn't
change its location.
The patch kills off everything that calculates the ChangingRegs vector.
Previously ChangingRegs spotted epilogues and marked registers as unchanging if
they weren't modified outside the epilogue, increasing the chance that we can
emit a single-location variable record. Without this feature,
debug-loc-offset.mir and pr19307.mir become temporarily XFAIL. They'll be
re-enabled by D62314, using the FrameDestroy flag to identify epilogues, I've
split this into two steps as FrameDestroy isn't necessarily supported by all
backends.
The logic for terminating variable locations at the end of a basic block now
becomes much more enjoyably simple: we just terminate them all.
Other test changes: inlined-argument.ll becomes XFAIL, but for a longer term.
The current algorithm for detecting that a variable has a single-location
doesn't work in this scenario (inlined function in multiple blocks), only other
bugs were making this test work. fission-ranges.ll gets slightly refreshed too,
as the location of "p" is now correctly determined to be a single location.
Differential Revision: https://reviews.llvm.org/D61940
llvm-svn: 362951
Similar to rL362909:
This isn't the ideal fix (use FMF on the select), but it's still an
improvement until we have better FMF propagation to selects and other
FP math operators.
I don't think there's much risk of regression from this change by
not including the FMF on the fcmp any more. The nsz/nnan FMF
should be the same on the fcmp and the fsub because they have the
same operand.
llvm-svn: 362943
Arm v8.1-M supports the VMOV instructions that move a half-precision
value to and from a GPR, but not if the GPR is SP or PC.
To fix this, I've changed those instructions to use the rGPR register
class instead of GPR. rGPR always excludes PC, and it excludes SP
except in the presence of the HasV8Ops target feature (i.e. Arm v8-A).
So the effect is that VMOV.F16 to and from PC is now illegal
everywhere, but VMOV.F16 to and from SP is illegal only on non-v8-A
cores (which I believe is all as it should be).
Reviewers: dmgreen, samparker, SjoerdMeijer, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60704
llvm-svn: 362942
This is a follow-up for D62809.
Content and Size fields should be optional as was discussed in comments
of the D62809's thread. With that, we can describe a specific string table and
symbol table sections in a more correct way and also show appropriate errors.
The patch adds lots of test cases where the behavior is described in details.
Differential revision: https://reviews.llvm.org/D62957
llvm-svn: 362931
We have a code in buildSectionIndex() that adds implicit sections:
// Add special sections after input sections, if necessary.
for (StringRef Name : implicitSectionNames())
if (SN2I.addName(Name, SecNo)) {
// Account for this section, since it wasn't in the Doc
++SecNo;
DotShStrtab.add(Name);
}
The problem arises when .dynsym is specified explicitly and no
DynamicSymbols is used. In that case, we do not add
.dynstr implicitly and will assert later when will try to set Link
for .dynsym.
Seems, in this case, reasonable behavior is to allow Link field to be zero.
This is what this patch does.
Differential revision: https://reviews.llvm.org/D63001
llvm-svn: 362929
This option allows loops with small max trip counts to be fully unrolled. This
can help with code like the remainder loops from manually unrolled loops like
those that appear in the cmsis dsp library. We would apparently previously
runtime unroll them with the default unroll count (4).
Differential Revision: https://reviews.llvm.org/D63064
llvm-svn: 362928
Variable's stack location can stretch longer than it should. If a
variable is placed at the stack in a some nested basic block its range
can be calculated to be up to the next occurrence of the variable's
DBG_VALUE, or up to the end of the function, thus covering a basic
blocks that should not be included in the variable’s location range.
This happens because the DbgEntityHistoryCalculator ends register
locations at the end of a basic block only if the variable’s location
register has been changed throughout the function, which is not the
case for the register used to reference stack objects.
This patch also tries to produce a single value location if the location
list builder managed to merge all the locations into one.
Reviewers: aprantl, dstenb, jmorse
Reviewed By: aprantl, dstenb, jmorse
Subscribers: djtodoro, ivanbaev, asowda
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D61600
llvm-svn: 362923
This opportunity is found from spec 2017 557.xz_r. And it is used by the sha encrypt/decrypt. See sha-2/sha512.c
static void store64(u64 x, unsigned char* y)
{
for(int i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static u64 load64(const unsigned char* y)
{
u64 res = 0;
for(int i = 0; i != 8; ++i)
res |= (u64)(y[i]) << ((7-i) * 8);
return res;
}
The load64 has been implemented by https://reviews.llvm.org/D26149
This patch is trying to implement the store pattern.
Match a pattern where a wide type scalar value is stored by several narrow
stores. Fold it into a single store or a BSWAP and a store if the targets
supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
>
*((i32)p) = val;
i8 *p = ...
i32 val = ...
p[0] = (val >> 24) & 0xFF;
p[1] = (val >> 16) & 0xFF;
p[2] = (val >> 8) & 0xFF;
p[3] = (val >> 0) & 0xFF;
>
*((i32)p) = BSWAP(val);
Differential Revision: https://reviews.llvm.org/D62897
llvm-svn: 362921
Summary:
Our default behavior is to use sign_extend for signed comparisons and zero_extend for everything else. But for equality we have the freedom to use either extension. If we can prove the input has been truncated from something with enough sign bits, we can use sign_extend instead and let DAG combine optimize it out. A similar rule is used by type legalization in LegalizeIntegerTypes.
This gets rid of the movzx in PR42189. The immediate will still take 4 bytes instead of the 2 bytes plus 0x66 prefix a cmp di, 32767 would get, but it avoids a length changing prefix.
Reviewers: RKSimon, spatel, xbolva00
Reviewed By: xbolva00
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63032
llvm-svn: 362920
Previously we did the equivalent operation in isel patterns with
COPY_TO_REGCLASS operations to transition. By inserting
scalar_to_vetors and extract_vector_elts before isel we can
allow each piece to be selected individually and accomplish the
same final result.
I ideally we'd use vector operations earlier in lowering/combine,
but that looks to be more difficult.
The scalar-fp-to-i64.ll changes are because we have a pattern for
using movlpd for store+extract_vector_elt. While an f64 store
uses movsd. The encoding sizes are the same.
llvm-svn: 362914
The `icmp sgt`/`icmp sle` variants are, too, miscompiles:
https://rise4fun.com/Alive/JFNPhttps://rise4fun.com/Alive/jHvL
A precondition 'x != 0' was forgotten by me.
While ensuring test coverage for `-1`, also add test coverage
for `0` mask. Mask `0` is allowed for all the folds,
mask `-1` is allowed for all the folds with unsigned `icmp` pred.
Constant mask `0` is missed though.
https://bugs.llvm.org/show_bug.cgi?id=42198
llvm-svn: 362910
This isn't the ideal fix (use FMF on the select), but it's still an
improvement until we have better FMF propagation to selects and other
FP math operators.
I don't think there's much risk of regression from this change by
not including the FMF on the fcmp any more. The nsz/nnan FMF
should be the same on the fcmp and the fneg (fsub) because they
have the same operand.
This works around the most glaring FMF logical inconsistency cited
in PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
llvm-svn: 362909
This is another step towards correcting our usage of fast-math-flags when applied on an fcmp.
In this case, we are checking for 'nnan' on the fcmp itself rather than the operand of
the fcmp. But I'm leaving that clause in until we're more confident that we can stop
relying on fcmp's FMF.
By using the more general "isKnownNeverNaN()", we gain a simplification shown on the
tests with 'uitofp' regardless of the FMF on the fcmp (uitofp never produces a NaN).
On the tests with 'fabs', we are now relying on the FMF for the call fabs instruction
in addition to the FMF on the fcmp.
This is a continuation of D62979 / rL362879.
llvm-svn: 362903
This is the second part of the commit fixing PR38917 (hoisting
partitially redundant machine instruction). Most of PRE (partitial
redundancy elimination) and CSE work is done on LLVM IR, but some of
redundancy arises during DAG legalization. Machine CSE is not enough
to deal with it. This simple PRE implementation works a little bit
intricately: it passes before CSE, looking for partitial redundancy
and transforming it to fully redundancy, anticipating that the next
CSE step will eliminate this created redundancy. If CSE doesn't
eliminate this, than created instruction will remain dead and eliminated
later by Remove Dead Machine Instructions pass.
The third part of the commit is supposed to refactor MachineCSE,
to make it more clear and to merge MachinePRE with MachineCSE,
so one need no rely on further Remove Dead pass to clear instrs
not eliminated by CSE.
First step: https://reviews.llvm.org/D54839
Fixes llvm.org/PR38917
This is fixed recommit of r361356 after PowerPC64 multistage build failure.
llvm-svn: 362901
Pointers that are in-bounds (either through dereferenceable_or_null or
thorough a getelementptr inbounds) cannot be captured with a comparison
against null. There is no way to construct a pointer that is still in
bounds but also NULL.
This helps safe languages that insert null checks before load/store
instructions. Without this patch, almost all pointers would be
considered captured even for simple loads. With this patch, an icmp with
null will not be seen as escaping as long as certain conditions are met.
There was a lot of discussion about this patch. See the Phabricator
thread for detals.
Differential Revision: https://reviews.llvm.org/D60047
llvm-svn: 362900
This is 1 step towards correcting our usage of fast-math-flags when applied on an fcmp.
In this case, we are checking for 'nnan' on the fcmp itself rather than the operand of
the fcmp. But I'm leaving that clause in until we're more confident that we can stop
relying on fcmp's FMF.
By using the more general "isKnownNeverNaN()", we gain a simplification shown on the
tests with 'uitofp' regardless of the FMF on the fcmp (uitofp never produces a NaN).
On the tests with 'fabs', we are now relying on the FMF for the call fabs instruction
in addition to the FMF on the fcmp.
I'll update the 'ult' case below here as a follow-up assuming no problems here.
Differential Revision: https://reviews.llvm.org/D62979
llvm-svn: 362879
Types such as float and i64's do not have legal loads in Thumb1, but will still
be loaded with a LDR (or potentially multiple LDR's). As such we can treat the
cost of addressing mode calculations the same as an i32 and get some optimisation
benefits.
Differential Revision: https://reviews.llvm.org/D62968
llvm-svn: 362874
Now with MVE being added, we can add the vector addressing mode costs for it.
These are generally imm7 multiplied by the size of the type being loaded /
stored.
Differential Revision: https://reviews.llvm.org/D62967
llvm-svn: 362873
The fp16 version of VLDR takes a imm8 multiplied by 2. This updates the costs
to account for those, and adds extra testing. It is dependant upon hasFPRegs16
as this is what the load/store instructions require.
Differential Revision: https://reviews.llvm.org/D62966
llvm-svn: 362872
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.
Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).
Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.
If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).
Common code changes:
* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.
* VirtRegMap is passed as an argument to foldMemoryOperand().
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888
llvm-svn: 362868
Summary:
Recompute and update offset/size fields so that we can implement llvm-objcopy options like --only-section.
This patch is the first step and focuses on supporting load commands that covered by existing tests: executable files and
dynamic libraries are not supported.
Reviewers: alexshap, rupprecht, jhenderson
Reviewed By: alexshap, rupprecht
Subscribers: compnerd, jakehehrlich, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62652
llvm-svn: 362863
Summary:
This fixes the bugzilla id,41862 to support dealing with checking
stop address against start address to support this not being a
proper object to check the disasembly against like gnu objdump
currently does.
Reviewers: jakehehrlich, rupprecht, echristo, jhenderson, grimar
Reviewed By: jhenderson
Subscribers: MaskRay, smeenai, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61969
Patch by Nicholas Krause!
llvm-svn: 362847
Displays the architecture names of an input file.
Unknown architectures are represented by unknown(cputype,cpusubtype).
Patch by Anusha Basana <anusha.basana@gmail.com>
Differential Revision: https://reviews.llvm.org/D62753
llvm-svn: 362840
This implements the functionality described in
https://lld.llvm.org/Partitions.html. It works as follows:
- Reads the section headers using the ELF header at file offset 0;
- If extracting a loadable partition:
- Finds the section containing the required partition ELF header by looking it up in the section table;
- Reads the ELF and program headers from the section.
- If extracting the main partition:
- Reads the ELF and program headers from file offset 0.
- Filters the section table according to which sections are in the program headers that it read:
- If ParentSegment != nullptr or section is not SHF_ALLOC, then it goes in.
- Sections containing partition ELF headers or program headers are excluded as there are no headers for these in ordinary ELF files.
Differential Revision: https://reviews.llvm.org/D62364
llvm-svn: 362818
llvm-lib now needs a `target triple` for bitcode, so add a new file
that's like trivial.ll but has one, and use that in the test.
(trivial.ll had a comment that looked like it wasn't supposed to be used
in tests directly, so I don't want to change that file.)
llvm-svn: 362809
When we call checkResourceLimit in bumpCycle or bumpNode, and we
know the resource count has just reached the limit (the equations
are equal). We should return true to mark that we are resource
limited for next schedule, or else we might continue to schedule
in favor of latency for 1 more schedule and create a schedule that
actually overbook the resource.
When we call checkResourceLimit to estimate the resource limite before
scheduling, we don't need to return true even if the equations are
equal, as it shouldn't limit the schedule for it .
Differential Revision: https://reviews.llvm.org/D62345
llvm-svn: 362805
lib.exe doesn't allow creating .lib files with object files that have
differing machine types. Update llvm-lib to match.
The motivation is to make it possible to infer the machine type of a
.lib file in lld, so that it can warn when e.g. a 32-bit .lib file is
passed to a 64-bit link (PR38965).
Fixes PR38782.
Differential Revision: https://reviews.llvm.org/D62913
llvm-svn: 362798
This is a potentially large perf win for AVX1 targets because of the way we
auto-vectorize to 256-bit but then expect the backend to legalize/optimize
for the half-implemented AVX1 ISA.
On the motivating example from PR37428 (even though this patch doesn't solve
the vector shift issue):
https://bugs.llvm.org/show_bug.cgi?id=37428
...there's a 16% speedup when compiling with "-mavx" (perf tested on Haswell)
because we eliminate the remaining 256-bit vblendv ops.
I added comments on a couple of tests that require further work. If we have
256-bit logic ops separating the vselect and extract, we should probably narrow
everything to 128-bit, but that requires a larger pattern match.
Differential Revision: https://reviews.llvm.org/D62969
llvm-svn: 362797
Summary:
This allows some integer bitwise operations to instead be performed by
hardware fp instructions. This is correct because the RISC-V spec
requires the F and D extensions to use the IEEE-754 standard
representation, and fp register loads and stores to be bit-preserving.
This is tested against the soft-float ABI, but with hardware float
extensions enabled, so that the tests also ensure the optimisation also
fires in this case.
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62900
llvm-svn: 362790
Summary:
This patch fixes a bug in the assembler that permitted a type suffix on
predicate registers when not expected. For instance, the following was
previously valid:
faddv h0, p0.q, z1.h
This bug was present in all SVE instructions containing predicates with
no type suffix and no predication form qualifier, i.e. /z or /m. The
latter instructions are already caught with an appropiate error message
by the assembler, e.g.:
.text
<stdin>:1:13: error: not expecting size suffix
cmpne p1.s, p0.b/z, z2.s, 0
^
A similar issue for SVE vector registers was fixed in:
https://reviews.llvm.org/D59636
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62942
llvm-svn: 362780
This is https://bugs.llvm.org/show_bug.cgi?id=42122.
If an object file has a size less than program header's file [offset + size]
(i.e. if we have overflow), llvm-objcopy crashes instead of reporting a
error.
The patch fixes this issue.
Differential revision: https://reviews.llvm.org/D62898
llvm-svn: 362778
Patch which introduces a target-independent framework for generating
hardware loops at the IR level. Most of the code has been taken from
PowerPC CTRLoops and PowerPC has been ported over to use this generic
pass. The target dependent parts have been moved into
TargetTransformInfo, via isHardwareLoopProfitable, with
HardwareLoopInfo introduced to transfer information from the backend.
Three generic intrinsics have been introduced:
- void @llvm.set_loop_iterations
Takes as a single operand, the number of iterations to be executed.
- i1 @llvm.loop_decrement(anyint)
Takes the maximum number of elements processed in an iteration of
the loop body and subtracts this from the total count. Returns
false when the loop should exit.
- anyint @llvm.loop_decrement_reg(anyint, anyint)
Takes the number of elements remaining to be processed as well as
the maximum numbe of elements processed in an iteration of the loop
body. Returns the updated number of elements remaining.
llvm-svn: 362774
We should keep the symbol type (STT_GNU_IFUNC) for a local ifunc because
it may result in an IRELATIVE reloc that the dynamic loader will use to
resolve the address at startup time.
There is another problem that is not fixed by this patch: a PC relative
relocation should also create a relocation with the ifunc symbol.
llvm-svn: 362767
Use the PPC vector min/max instructions for computing the corresponding
operation as these should be faster than the compare/select sequences
we currently emit.
Differential revision: https://reviews.llvm.org/D47332
llvm-svn: 362759
SIInsertSkips really doesn't understand the control flow, and makes
very stupid assumptions about the block layout. This was able to get
away with not skipping return blocks, since usually after
structurization there is only one placed at the end of the
function. Tail duplication can break this assumption.
llvm-svn: 362754
Incorrect Debug Variable Range was calculated while "COMPUTING LIVE DEBUG VARIABLES" stage.
Range for Debug Variable("i") computed according to current state of instructions
inside of basic block. But Register Allocator creates new instructions which were not taken
into account when Live Debug Variables computed. In the result DBG_VALUE instruction for
the "i" variable was put after these newly inserted instructions. This is incorrect.
Debug Value for the loop counter should be inserted before any loop instruction.
Differential Revision: https://reviews.llvm.org/D62650
llvm-svn: 362750
"Divergence driven ISel. Assign register class for cross block values
according to the divergence."
that discovered the design flaw leading to several issues that
required to be solved before.
This change reverts AMDGPU specific changes and keeps common part
unaffected.
llvm-svn: 362749
This primarily affects add/fadd/mul/fmul/and/or/xor/pmuludq/pmuldq/max/min/fmaxc/fminc/pmaddwd/pavg.
We already commuted the unmasked and zero masked versions.
I've added 512-bit stack folding tests for most of the instructions
affected. I've tested needing commuting and not commuting across
unmasked, merged masked, and zero masked. The 128/256 bit instructions
should behave similarly.
llvm-svn: 362746
Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
llvm-svn: 362735
This adds support for unary fneg based on the implementation of BinaryOperator without the soft float FP cost.
Previously we would just delegate to visitUnaryInstruction. I think the only real change is that we will pass the FastMath flags to SimplifyFNeg now.
Differential Revision: https://reviews.llvm.org/D62699
llvm-svn: 362732
This is a really silly bug that even a simple test w/an unconditional latch would have caught. I tried to guard against the case, but put it in the wrong if check. Oops.
llvm-svn: 362727
This patch is the first step towards ensuring MergeConsecutiveStores correctly handles non-temporal loads\stores:
1 - When merging load\stores we must ensure that they all have the same non-temporal flag. This is unlikely to occur, but can in strange cases where we're storing at the end of one page and the beginning of another.
2 - The merged load\store node must retain the non-temporal flag.
Differential Revision: https://reviews.llvm.org/D62910
llvm-svn: 362723
Summary:
This patch implements SDAG call lowering on AIX for functions
which only have parameters that could fit into GPRs.
Reviewers: hubert.reinterpretcast, syzaara
Differential Revision: https://reviews.llvm.org/D62823
llvm-svn: 362708
Summary:
This patch is part of a patch series to add support for FileCheck
numeric expressions. This specific patch introduces support for defining
numeric variable in a CHECK directive.
This commit introduces support for defining numeric variable from a
litteral value in the input text. Numeric expressions can then use the
variable provided it is on a later line.
Copyright:
- Linaro (changes up to diff 183612 of revision D55940)
- GraphCore (changes in later versions of revision D55940 and
in new revision created off D55940)
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: hiraditya, llvm-commits, probinson, dblaikie, grimar, arichardson, tra, rnk, kristina, hfinkel, rogfer01, JonChesterfield
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60386
llvm-svn: 362705
This patch implements the "CREATE_THIN" MRI script command, allowing thin archives to be created via MRI scripts.
Differential Revision: https://reviews.llvm.org/D62919
llvm-svn: 362704
This patch is a follow up for D62018 to add lrint/llrint
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62863
llvm-svn: 362700
This patch is a follow up for D61391 to add lround/llround
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62861
llvm-svn: 362698
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 362687