Summary: This is a preparatory step for D41811: refactoring code for breaking vector operands of binary operation to legal-types.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41925
llvm-svn: 322296
Broken test from old attempt for folding tables - we don't peek through extract_subvector spills at all (which is why it doesn't fold), and we already have foldMemoryOperandCustom to handle insertps immediate correction anyway.
llvm-svn: 322292
In practice, this patch has no effect on scheduling.
There is no test case as there already exists a comprehensive test case for
LSE Atomics.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D40694
llvm-svn: 322291
Summary:
Docs are out of date now that we have separate repositories for LLVM,
Clang, etc.
Reviewers: asb
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D41919
llvm-svn: 322290
Summary:
References to the source operand within class MemTransferInst are currently
by a constant 1. Abstract this out into a named constant.
llvm-svn: 322289
parent function
Ideally we should merge the attributes from the functions somehow, but
this is obviously an improvement over taking random attributes from the
caller which will trip up the verifier if they're nonsensical for an
unary intrinsic call.
llvm-svn: 322284
This was originally planned as the fix for:
https://bugs.llvm.org/show_bug.cgi?id=35834
...but simpler transforms handled that case, so I implemented a
lesser solution. It turns out we need to handle the case with 'not'
ops too because the real code example that we are trying to solve:
https://bugs.llvm.org/show_bug.cgi?id=35875
...has extra uses of the intermediate values, so we can't rely on
smaller canonicalizations to get us to the goal.
As with rL321672, I've tried to show every possibility in the
codegen tests because that's the simplest way to prove we're doing
the right thing in the wide variety of permutations of this pattern.
We can also show an InstCombine win because we added a fold for
this case in:
rL321998 / D41603
An Alive proof for one variant of the pattern to show that the
InstCombine and codegen results are correct:
https://rise4fun.com/Alive/vd1
Name: min3_nots
%nx = xor i8 %x, -1
%ny = xor i8 %y, -1
%nz = xor i8 %z, -1
%cmpxz = icmp slt i8 %nx, %nz
%minxz = select i1 %cmpxz, i8 %nx, i8 %nz
%cmpyz = icmp slt i8 %ny, %nz
%minyz = select i1 %cmpyz, i8 %ny, i8 %nz
%cmpyx = icmp slt i8 %y, %x
%r = select i1 %cmpyx, i8 %minxz, i8 %minyz
=>
%cmpxyz = icmp slt i8 %minxz, %ny
%r = select i1 %cmpxyz, i8 %minxz, i8 %ny
Name: min3_nots_alt
%nx = xor i8 %x, -1
%ny = xor i8 %y, -1
%nz = xor i8 %z, -1
%cmpxz = icmp slt i8 %nx, %nz
%minxz = select i1 %cmpxz, i8 %nx, i8 %nz
%cmpyz = icmp slt i8 %ny, %nz
%minyz = select i1 %cmpyz, i8 %ny, i8 %nz
%cmpyx = icmp slt i8 %y, %x
%r = select i1 %cmpyx, i8 %minxz, i8 %minyz
=>
%xz = icmp sgt i8 %x, %z
%maxxz = select i1 %xz, i8 %x, i8 %z
%xyz = icmp sgt i8 %maxxz, %y
%maxxyz = select i1 %xyz, i8 %maxxz, i8 %y
%r = xor i8 %maxxyz, -1
llvm-svn: 322283
Primarily, this allows us to use the aggressive extraction mechanisms in combineExtractWithShuffle earlier and make use of UNDEF elements that may be lost during lowering.
llvm-svn: 322279
The code that is supposed to "Round odd types to the next pow of two" seems
broken and as well completely unused (untested). It also seems that
ExpandStore really shouldn't ever change the memory VT, which this in fact
does.
As a first step in fixing the broken handling of vector stores (of irregular
types, e.g. an i1 vector), this code is removed. For discussion, see
https://bugs.llvm.org/show_bug.cgi?id=35520.
Review: Eli Friedman
llvm-svn: 322275
Summary:
As RKSimon suggested in pr35820, in the case that Src is smaller in
bit-size than Indices, need to widen Src to avoid type mismatch.
Fixes pr35820
Reviewers: RKSimon, craig.topper
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41865
llvm-svn: 322272
Although the register scavenger can often find a spare register, an emergency
spill slot is needed to guarantee success. Reserve this slot in cases where
the function is known to have a large stack (meaning the scavenger may be
needed when forming stack addresses).
llvm-svn: 322269
Summary:
- MSVC uses the none type for a variadic argument in CodeView
- Add a unit test
Reviewers: zturner, llvm-commits
Reviewed By: zturner
Differential Revision: https://reviews.llvm.org/D41931
llvm-svn: 322257
If the index is v2i64 we can use the scatter instruction that has v4i32/v4f32 data register, v2i64 index, and v2i1 mask. Similar was already done for gather.
Implement custom widening for v2i32 data to remove the code that reverses type legalization during lowering.
llvm-svn: 322254
The function can take a significant amount of time on some
complicated test cases, but for the currently only use of
the function we can stop the initialization much earlier
when we find out we are going to discard the result anyway
in the caller of the function.
Adding configurable cut-off points so that we avoid wasting time.
NFCI.
llvm-svn: 322248
Summary:
Addresses issue: https://bugs.llvm.org/show_bug.cgi?id=34595
The topmost class, `SmallVector`, has internal storage for some
elements; `N - 1` elements' bytes worth of space. Meanwhile a base
class `SmallVectorTemplateCommon` has room for one element as well,
totaling `N` elements' worth of space.
The space for the N elements is contiguous and straddles
`SmallVectorTemplateCommon` and `SmallVector`.
A class "between" those two owning the storage, `SmallVectorImpl`, in
its destructor, calls the destructor for elements contained in the
vector, if any. It uses `destroy_range(begin, end)` and deletes all
items in sequence, starting from the end.
By the time the destructor for `SmallVectorImpl` is running, though, the
memory for elements `[1, N)` is already poisoned, due to `SmallVector`'s
destructor having done its thing already.
So if the element type `T` has a nontrivial destructor that accesses any
members of the `T` instance being destroyed, we'll run into a
user-after-poison bug.
This patch moves the destruction loop into `SmallVector`'s destructor,
so any memory being accessed while dtors are running is not yet
poisoned.
Confirmed this broke before (and now works with this patch) with these
compiler flags:
-fsanitize=memory
-fsanitize-memory-use-after-dtor
-fsanitize-memory-track-origins
and with the cmake flag
`-DLLVM_USE_SANITIZER='MemoryWithOrigins;Undefined'` as well as
`MSAN_OPTIONS=poison_in_dtor=1`.
Patch By: elsteveogrande
Reviewers: eugenis, morehouse, dblaikie
Reviewed By: eugenis, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41916
llvm-svn: 322241
Like rL321668 / rL321672, the planned optimizer change to
fix these will be in ValueTracking, but we can test the
changes cleanly here with AArch64 codegen.
llvm-svn: 322238
Revert for now as the testcase is hitting a pre-existing verifier error
that manifest as a failure when expensive checks are enabled (or
-verify-machineinstrs) is used.
This reverts commit r322200.
llvm-svn: 322231
After D41349, we can no get a MCSubtargetInfo into the MCAsmBackend constructor. This allows us to get NOPL from a subtarget feature rather than a CPU name blacklist.
Differential Revision: https://reviews.llvm.org/D41721
llvm-svn: 322227
Simplify the code slightly: Instead of creating empty subranges in one
case and immediately removing them, do not create them in the first
place.
llvm-svn: 322226
Branch relaxation is needed to support branch displacements that overflow the
instruction's immediate field.
Differential Revision: https://reviews.llvm.org/D40830
llvm-svn: 322224
Make sure I really get back to the beahvior before my rewrite in r321035
which turned out not to be completely NFC as I changed the behavior for
the ios simulator environment.
llvm-svn: 322223
This is a prerequisite for the branch relaxation pass, and allows a number of
optimisation passes (e.g. BranchFolding and MachineBlockPlacement) to work.
Differential Revision: https://reviews.llvm.org/D40808
llvm-svn: 322222
Includes support for expanding va_copy. Also adds support for using 'aligned'
registers when necessary for vararg calls, and ensure the frame pointer always
points to the bottom of the vararg spill region. This is necessary to ensure
that the saved return address and stack pointer are always available at fixed
known offsets of the frame pointer.
Differential Revision: https://reviews.llvm.org/D40805
llvm-svn: 322215
Currently we infer the scale at isel time by analyzing whether the base is a constant 0 or not. If it is we assume scale is 1, else we take it from the element size of the pass thru or stored value. This seems a little weird and I think it makes more sense to make it explicit in the DAG rather than doing tricky things in the backend.
Most of this patch is just making sure we copy the scale around everywhere.
Differential Revision: https://reviews.llvm.org/D40055
llvm-svn: 322210
ADRP instructions weren't being outlined because they're PC-relative and thus
fail the LR checks. This patch adds a special case for ADRPs to
getOutliningType to make sure that ADRPs can be outlined and updates the MIR
test.
llvm-svn: 322207
D41353 / D41233 are proposing to alter the shl/and canonicalization,
but I think that would just move an existing pattern-matching hole
to a different place.
llvm-svn: 322206
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322200