This patch completely replaces the instruction scheduling information for the Haswell architecture target by modifying the file X86SchedHaswell.td located under the X86 Target.
We used the scheduling information retrieved from the Haswell architects in order to replace and modify the existing scheduling.
The patch continues the scheduling replacement effort started with the SNB target in r307529 and r310792.
Information includes latency, number of micro-Ops and used ports by each HSW instruction.
Please expect some performance fluctuations due to code alignment effects.
Reviewers: RKSimon, zvi, aymanmus, craig.topper, m_zuckerman, igorb, dim, chandlerc, aaboud
Differential Revision: https://reviews.llvm.org/D36663
llvm-svn: 311879
This patch defines the i1 type as illegal in the X86 backend for AVX512.
For DAG operations on <N x i1> types (build vector, extract vector element, ...) i8 is used, and should be truncated/extended.
This should produce better scalar code for i1 types since GPRs will be used instead of mask registers.
Differential Revision: https://reviews.llvm.org/D32273
llvm-svn: 303421
The patch itself is simple: stop discriminating against vectors in visitAnd() and again in
SimplifyDemandedBits().
Some notes for reference:
1. We're not consistent about calls to SimplifyDemandedBits in the various visitXXX functions.
Sometimes, we check if the RHS is a constant first. Other times (like here), we just dive in.
2. I'd like to break the vector shackles in steps for the sake of risk minimization, but we could
make similar simultaneous changes in other places if we think that would be better.
3. I don't know what the intent of the changed tests in this patch was supposed to be, but since
they wiggled in a positive way, I'm just going with that. :)
4. In the rotate tests, note that we can see through non-splat constants. This is a result of D24253.
5. My motivation for being here now is to make D31944 look better, so this is step 1 of N towards
improving the vector codegen in that patch without writing any actual new code.
Differential Revision: https://reviews.llvm.org/D32230
llvm-svn: 300725
This will result in a KMOVW or KMOVD being emitted during register allocation. And in at least some cases this might allow the register coalescer to remove the copy all together.
llvm-svn: 298984
We've had several bugs(PR32256, PR32241) recently that resulted from usages of AH/BH/CH/DH either before or after a copy to/from a mask register.
This ultimately occurs because we create COPY_TO_REGCLASS with VK1 and GR8. Then in CopyToFromAsymmetricReg in X86InstrInfo we find a 32-bit super register for the GR8 to emit the KMOV with. But as these tests are demonstrating, its possible for the GR8 register to be a high register and we end up doing an accidental extra or insert from bits 15:8.
I think the best way forward is to stop making copies directly between mask registers and GR8/GR16. Instead I think we should restrict to only copies between mask registers and GR32/GR64 and use EXTRACT_SUBREG/INSERT_SUBREG to handle the conversion from GR32 to GR16/8 or vice versa.
Unfortunately, this complicates fastisel a bit more now to create the subreg extracts where we used to create GR8 copies. We can probably make a helper function to bring down the repitition.
This does result in KMOVD being used for copies when BWI is available because we don't know the original mask register size. This caused a lot of deltas on tests because we have to split the checks for KMOVD vs KMOVW based on BWI.
Differential Revision: https://reviews.llvm.org/D30968
llvm-svn: 298928
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
Summary:
This teaches getNode to simplify extracting from Undef. This is similar to what is done for EXTRACT_VECTOR_ELT. It also adds support for extracting from CONCAT_VECTOR when we can reuse one of the inputs to the concat. These seem like simple non-target specific optimizations.
For X86 we currently handle undef in extractSubvector, but not all EXTRACT_SUBVECTOR creations go through there.
Ultimately, my motivation here is to simplify extractSubvector and remove custom lowering for EXTRACT_SUBVECTOR since we don't do anything but handle undef and BUILD_VECTOR optimizations, but those should be DAG combines.
Reviewers: RKSimon, delena
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29000
llvm-svn: 292876
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
Fixed an issue with vector usage of TargetLowering::isConstTrueVal / TargetLowering::isConstFalseVal boolean result matching.
The comment said we shouldn't handle constant splat vectors with undef elements. But the the actual code was returning false if the build vector contained no undef elements....
This patch now ignores the number of undefs (getConstantSplatNode will return null if the build vector is all undefs).
The change has also unearthed a couple of missed opportunities in AVX512 comparison code that will need to be addressed.
Differential Revision: https://reviews.llvm.org/D26031
llvm-svn: 286238
Previously we were extending to copying the whole ZMM register. The register allocator shouldn't use XMM16-31 or YMM16-31 in this configuration as the instructions to spill them aren't available.
llvm-svn: 280648
This reverts most of r274613 (AKA r274626) and its follow-ups (r276347, r277289),
due to miscompiles in the test suite. The FastISel change was left in, because
it apparently fixes an unrelated issue.
(Recommit of r279782 which was broken due to a bad merge.)
This fixes 4 out of the 5 test failures in PR29112.
llvm-svn: 279788
This reverts most of r274613 and its follow-ups (r276347, r277289), due to
miscompiles in the test suite. The FastISel change was left in, because it
apparently fixes an unrelated issue.
This fixes 4 out of the 5 test failures in PR29112.
llvm-svn: 279782
1. Use shuffle to insert element i1 into vector. The previous implementation was incorrect ( dest_bit OR src_bit , it doesn't clear the bit if src_bit=0 )
2. Improve shuffle i1 vector, use CVT2MASK if supported instead TRUNCATE.
Differential Revision: http://reviews.llvm.org/D23347
llvm-svn: 278623
The previous implementation (not custom) doesn't enforce zeroing off upper bits. The assumption is that i1 PRODUCER (truncate and extractelement) must zero all upper bits, so i1 CONSUMER instructions ( test, zext, save, etc) can be done without additional zeroing.
Make extractelement i1 lowering custom for all vector i1.
Differential Revision: http://reviews.llvm.org/D23246
llvm-svn: 278328
Optimized lowering of BITCAST node. The BITCAST node can be replaced with COPY_TO_REG instead of KMOV.
It allows to suppress two opposite BITCAST operations and avoid redundant "movs".
Differential Revision: https://reviews.llvm.org/D23247
llvm-svn: 277958
We know that pcmp produces all-ones/all-zeros bitmasks, so we can use that behavior to avoid unnecessary constant loading.
One could argue that load+and is actually a better solution for some CPUs (Intel big cores) because shifts don't have the
same throughput potential as load+and on those cores, but that should be handled as a CPU-specific later transformation if
it ever comes up. Removing the load is the more general x86 optimization. Note that the uneven usage of vpbroadcast in the
test cases is filed as PR28505:
https://llvm.org/bugs/show_bug.cgi?id=28505
Differential Revision: http://reviews.llvm.org/D22225
llvm-svn: 275276
An identity COPY like this:
%AL = COPY %AL, %EAX<imp-def>
has no semantic effect, but encodes liveness information: Further users
of %EAX only depend on this instruction even though it does not define
the full register.
Replace the COPY with a KILL instruction in those cases to maintain this
liveness information. (This reverts a small part of r238588 but this
time adds a comment explaining why a KILL instruction is useful).
llvm-svn: 274952
The patch removes redundant kmov instructions (not all, we still have a lot of work here) and redundant "and" instructions after "setcc".
I use "AssertZero" marker between X86ISD::SETCC node and "truncate" to eliminate extra "and $1" instruction.
I also changed zext, aext and trunc patterns in the .td file. It allows to remove extra "kmov" instruictions.
This patch fixes https://llvm.org/bugs/show_bug.cgi?id=28173.
Fast ISEL mode is not supported correctly for AVX-512. ICMP/FCMP scalar instruction should return result in k-reg. It will be fixed in one of the next patches. I redirected handling of "cmp" to the DAG builder mode. (The code looks worse in one specific test case, but without this fix the new patch fails).
Differential revision: http://reviews.llvm.org/D21956
llvm-svn: 274613
Enable truncate 128/256bit packed byte/word with AVX512BW but without AVX512VL, use 512bit instructions.
Differential Revision: http://reviews.llvm.org/D16531
llvm-svn: 259044
Fix TRUNCATE lowering vector to vector i1, use LSB and not MSB.
Implement VPMOVB/W/D/Q2M intrinsic.
Differential Revision: http://reviews.llvm.org/D15675
llvm-svn: 256470
This commit broke the build. Numerous build bots broken, and it was
blocking my progress so reverting.
It should be trivial to reproduce -- enable the BPF backend and it
should fail when running llvm-tblgen.
llvm-svn: 242992