There are two AGU units, and per 1cy, there can be either two loads,
or a load and a store; but not two stores, or two loads and a store.
Additionally, loads shouldn't affect the store scheduler and vice versa.
(but *should* affect the PdEX scheduler.)
Required rL346545.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39465
llvm-svn: 346587
Adding the baseline tests in a preparatory NFC commit,
so that the actual commit shows the *diff*.
Yes, i'm aware that a few of these codegen-based sched tests
are testing wrong instructions, i will fix that afterwards.
For https://reviews.llvm.org/D52779
llvm-svn: 345462
This is a fix for the problem arising in D47374 (PR37678):
https://bugs.llvm.org/show_bug.cgi?id=37678
We may not have throughput info because it's not specified in the model
or it's not available with variant scheduling, so assume that those
instructions can execute/complete at max-issue-width.
Differential Revision: https://reviews.llvm.org/D47723
llvm-svn: 334055
Summary:
{FLDL2E, FLDL2T, FLDLG2, FLDLN2, FLDPI} were using WriteMicrocoded.
- I've measured the values for Broadwell, Haswell, SandyBridge, Skylake.
- For ZnVer1 and Atom, values were transferred form InstRWs.
- For SLM and BtVer2, I've guessed some values :(
Reviewers: RKSimon, craig.topper, andreadb
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D47585
llvm-svn: 333656
Summary:
- I've measured the values for Broadwell, Haswell, SandyBridge, Skylake.
- For ZnVer1 and Atom, values were transferred form `InstRW`s.
- For SLM and BtVer2, values are from Agner.
This is split off from https://reviews.llvm.org/D47377
Reviewers: RKSimon, andreadb
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D47523
llvm-svn: 333642
WriteFRcp/WriteFRsqrt are split to support scalar, XMM and YMM/ZMM instructions.
WriteFSqrt is split into single/double/long-double sizes and scalar, XMM, YMM and ZMM instructions.
This removes all InstrRW overrides for these instructions.
NOTE: There were a couple of typos in the Znver1 model - notably a 1cy throughput for SQRT that is highly unlikely and doesn't tally with Agner.
NOTE: I had to add Agner's numbers for several targets for WriteFSqrt80.
llvm-svn: 331629
Split the fp and integer vector logical instruction scheduler classes - older CPUs especially often handled these on different pipes.
This unearthed a couple of things that are also handled in this patch:
(1) We were tagging avx512 fp logic ops as WriteFAdd, probably because of the lack of WriteFLogic
(2) SandyBridge had integer logic ops only using Port5, when afaict they can use Ports015.
(3) Cleaned up x86 FCHS/FABS scheduling as they are typically treated as fp logic ops.
Differential Revision: https://reviews.llvm.org/D45629
llvm-svn: 330480
Split VCMP/VMAX/VMIN instructions off to WriteFCmp and VCOMIS instructions off to WriteFCom instead of assuming they match WriteFAdd
Differential Revision: https://reviews.llvm.org/D45656
llvm-svn: 330179
Atom is the only x86 target that still uses schedule itineraries, if we can remove this then we can begin the work on removing x86 itineraries. I've also found that it will help with PR36550.
I've focussed on matching the existing model as closely as possible (relying on the schedule tests), PR36895 indicated a lot of these were incorrect but we can just as easily fix these after this patch as before. Hopefully we can get llvm-exegesis to help here,
There are a few instructions that rely on itinerary scheduling (mainly push/pop/return) of multiple resource stages, but I don't think any of these are show stoppers.
There are also a few codegen changes that seem related to the post-ra scheduler acting a little differently, I haven't tracked these down but they don't seem critical.
NOTE: I don't have access to any Atom hardware, so this hasn't been tested in the wild.
Differential Revision: https://reviews.llvm.org/D45486
llvm-svn: 329837
As mentioned on D44647, this patch increases the default memory latency to +5cy , which more closely matches what most custom cases are doing for reg-mem instructions.
I've bumped LoadLatency, ReadAfterLd and WriteLoad values to 5cy to be consistent.
As Sandy Bridge is currently our default generic model, this affects a lot of scheduling tests...
Differential Revision: https://reviews.llvm.org/D44654
llvm-svn: 329388
1. Given that we already have a classification bucket with 'nop' in the name,
that's where 'nop' belongs. Right now, it's only used for prefix bytes and 'pause'.
2. Make the latency of this class '1' for Jaguar to tell the scheduler (and presumably
llvm-mca) how to model the resource requirements better even though a nop has no
dependencies.
Differential Revision: https://reviews.llvm.org/D44608
llvm-svn: 327853
Updated the scheduling information for the Haswell subtarget with the following changes:
Regrouped the instructions after adding appropriate load + store latencies.
Added scheduling for missing instructions such as the GATHER instrs.
The changes were made after revisiting the latencies impact of all memory uOps.
Reviewers: RKSimon, zvi, craig.topper, apilipenko
Differential Revision: https://reviews.llvm.org/D40021
Change-Id: Iaf6c1f5169add1552845a8a566af4e5a359217a7
llvm-svn: 320137
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Looking through Agner, FTST is very similar to generic float compare behaviour, so I've added them to the existing IIC_FCOMI (WriteFAdd) tags.
llvm-svn: 319184
Atom's FABS/FCHS/FSQRT latencies taken from Agner.
Note: I just added FSIN and FCOS to the existing IIC_FSINCOS itinerary, which is actually a more costly instruction.
llvm-svn: 319175