Commit Graph

5 Commits

Author SHA1 Message Date
Vedant Kumar a48cd9aedd Try to address Windows bot failure after r352080
See the bot error message reported in https://reviews.llvm.org/D57082.

Avoid trying to match full class names in -debug-pass-manager output,
because they aren't portable.

llvm-svn: 352138
2019-01-25 00:15:16 +00:00
Vedant Kumar ef1ebed1c6 [HotColdSplit] Move splitting earlier in the pipeline
Performing splitting early has several advantages:

  - Inhibiting inlining of cold code early improves code size. Compared
    to scheduling splitting at the end of the pipeline, this cuts code
    size growth in half within the iOS shared cache (0.69% to 0.34%).

  - Inhibiting inlining of cold code improves compile time. There's no
    need to inline split cold functions, or to inline as much *within*
    those split functions as they are marked `minsize`.

  - During LTO, extra work is only done in the pre-link step. Less code
    must be inlined during cross-module inlining.

An additional motivation here is that the most common cold regions
identified by the static/conservative splitting heuristic can (a) be
found before inlining and (b) do not grow after inlining. E.g.
__assert_fail, os_log_error.

The disadvantages are:

  - Some opportunities for splitting out cold code may be missed. This
    gap can potentially be narrowed by adding a worklist algorithm to the
    splitting pass.

  - Some opportunities to reduce code size may be lost (e.g. store
    sinking, when one side of the CFG diamond is split). This does not
    outweigh the code size benefits of splitting earlier.

On net, splitting early in the pipeline has substantial code size
benefits, and no major effects on memory locality or performance. We
measured memory locality using ktrace data, and consistently found that
10% fewer pages were needed to capture 95% of text page faults in key
iOS benchmarks. We measured performance on frequency-stabilized iOS
devices using LNT+externals.

This reverses course on the decision made to schedule splitting late in
r344869 (D53437).

Differential Revision: https://reviews.llvm.org/D57082

llvm-svn: 352080
2019-01-24 18:55:49 +00:00
Michael Kruse 7244852557 [Unroll/UnrollAndJam/Vectorizer/Distribute] Add followup loop attributes.
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.

    #pragma clang loop unroll_and_jam(enable)
    #pragma clang loop distribute(enable)

is the same as

    #pragma clang loop distribute(enable)
    #pragma clang loop unroll_and_jam(enable)

and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.

This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,

    !0 = !{!0, !1, !2}
    !1 = !{!"llvm.loop.unroll_and_jam.enable"}
    !2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
    !3 = !{!"llvm.loop.distribute.enable"}

defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.

Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.

For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.

Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.

To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.

With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).

Reviewed By: hfinkel, dmgreen

Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288

llvm-svn: 348944
2018-12-12 17:32:52 +00:00
Vedant Kumar ba88ad35ec [test] Relax test/Other/opt-hot-cold-split.ll
On some ARM bots, 'Target Pass Configuration' does not run after 'Target
Transform Info'. Relax this pipeline test to allow that.

This is the same fix as in r328167.

Bot URL: http://lab.llvm.org:8011/builders/clang-cmake-armv7-quick/builds/4611

llvm-svn: 344919
2018-10-22 16:50:24 +00:00
Aditya Kumar d9e2e383a9 Schedule Hot Cold Splitting pass after most optimization passes
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.

Reviewers: sebpop, vsk

Reviewed By: sebpop, vsk

Subscribers: mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D53437

llvm-svn: 344869
2018-10-21 18:11:56 +00:00