A user reported an issue to me via email that Clang was accepting some
code that GCC was rejecting. After investigation, it turned out to be a
general problem of us failing to properly reject attributes written in
the type position in C when they don't apply to types. The root cause
was a terminology issue -- we sometimes use "CXX11Attr" to mean [[]] in
C++11 mode and sometimes [[]] in general -- and this came back to bite
us because in this particular case, it really meant [[]] in C++ mode.
I fixed the issue by introducing a new function
AttributeCommonInfo::isStandardAttributeSyntax() to represent [[]] in
either C or C++ mode.
This fix pointed out that we've had the issue in some of our existing
tests, which have all been corrected. This resolves
https://bugs.llvm.org/show_bug.cgi?id=50954.
This patch adds a new clang builtin, __arithmetic_fence. The purpose of the
builtin is to provide the user fine control, at the expression level, over
floating point optimization when -ffast-math (-ffp-model=fast) is enabled.
The builtin prevents the optimizer from rearranging floating point expression
evaluation. The new option fprotect-parens has the same effect on
parenthesized expressions, forcing the optimizer to respect the parentheses.
Reviewed By: aaron.ballman, kpn
Differential Revision: https://reviews.llvm.org/D100118
This patch adds a new clang builtin, __arithmetic_fence. The purpose of the
builtin is to provide the user fine control, at the expression level, over
floating point optimization when -ffast-math (-ffp-model=fast) is enabled.
The builtin prevents the optimizer from rearranging floating point expression
evaluation. The new option fprotect-parens has the same effect on
parenthesized expressions, forcing the optimizer to respect the parentheses.
Reviewed By: aaron.ballman, kpn
Differential Revision: https://reviews.llvm.org/D100118
Before this change, CXXDefaultArgExpr would always have
ExprDependence::None. This can lead to issues when, for example, the
inner expression is RecoveryExpr and yet containsErrors() on the default
expression is false.
Differential Revision: https://reviews.llvm.org/D103982
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
This fixes the missing address space on `this` in the implicit move
assignment operator.
The function called here is an abstraction around the lines that have
been removed which also sets the address space correctly.
This is copied from CopyConstructor, CopyAssignment and MoveConstructor,
all of which use this function, and now MoveAssignment does too.
Fixes: PR50259
Reviewed By: svenvh
Differential Revision: https://reviews.llvm.org/D103252
The original version of this was reverted, and @rjmcall provided some
advice to architect a new solution. This is that solution.
This implements a builtin to provide a unique name that is stable across
compilations of this TU for the purposes of implementing the library
component of the unnamed kernel feature of SYCL. It does this by
running the Itanium mangler with a few modifications.
Because it is somewhat common to wrap non-kernel-related lambdas in
macros that aren't present on the device (such as for logging), this
uniquely generates an ID for all lambdas involved in the naming of a
kernel. It uses the lambda-mangling number to do this, except replaces
this with its own number (starting at 10000 for readabililty reasons)
for lambdas used to name a kernel.
Additionally, this implements itself as constexpr with a slight catch:
if a name would be invalidated by the use of this lambda in a later
kernel invocation, it is diagnosed as an error (see the Sema tests).
Differential Revision: https://reviews.llvm.org/D103112
variables emitted on both host and device side with different addresses
when ODR-used by host function should not cause device side counter-part
to be force emitted.
This fixes the regression caused by https://reviews.llvm.org/D102237
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D102801
The following program winds up with
D->getDefaultArgStorage().getInheritedFrom() == nullptr
during dumping the TemplateTemplateParmDecl corresponding to the
template parameter of i.
template <typename>
struct R;
template <template <typename> class = R>
void i();
This patch fixes the null pointer dereference.
Set the source ranges for parsed GNU-style attributes in
ParseGNUAttributes(), the same way that ParseCXX11Attributes() does it.
Differential Revision: https://reviews.llvm.org/D75844
Set the source ranges for parsed GNU-style attributes in
ParseGNUAttributes(), the same way that ParseCXX11Attributes() does it.
Differential Revision: https://reviews.llvm.org/D75844
This patch is to fix lit test case failure relate to alignment, on z/OS, maximum alignment value for 64 bit mode is 16 and also fixed clang/test/Layout/itanium-union-bitfield.cpp, attribute ((aligned(4))) is needed for bit-field member in Union for z/OS because single bit-field has one byte alignment, this will make sure size and alignment will be correct value on z/OS.
Differential Revision: https://reviews.llvm.org/D98793
https://wg21.link/P2173 is making its way through WG21 currently and
has not been formally adopted yet. This feature provides very useful
functionality in that you can specify attributes on the various
function *declarations* generated by a lambda expression, where the
current C++ grammar only allows attributes which apply to the various
function *types* so generated.
This patch implements P2173 on the assumption that it will be adopted
by WG21 with this syntax for C++23.
Currently TypePrinter lumps anonymous classes and unnamed classes in one group "anonymous" this is not correct and can be confusing in some contexts.
Differential Revision: https://reviews.llvm.org/D96807
Currently TypePrinter lumps anonymous classes and unnamed classes in one group "anonymous" this is not correct and can be confusing in some contexts.
Differential Revision: https://reviews.llvm.org/D96807
With https://reviews.llvm.org/D63376, we began storing the APValue
directly into the ConstantExpr object so that we could reuse the
calculated value later. However, it missed a case when not in C++11
mode but the expression is known to be constant.
This patch implements codegen for __managed__ variable attribute for HIP.
Diagnostics will be added later.
Differential Revision: https://reviews.llvm.org/D94814
This patch adds support for two new variants of the vectorize_width
pragma:
1. vectorize_width(X[, fixed|scalable]) where an optional second
parameter is passed to the vectorize_width pragma, which indicates if
the user wishes to use fixed width or scalable vectorization. For
example the user can now write something like:
#pragma clang loop vectorize_width(4, fixed)
or
#pragma clang loop vectorize_width(4, scalable)
In the absence of a second parameter it is assumed the user wants
fixed width vectorization, in order to maintain compatibility with
existing code.
2. vectorize_width(fixed|scalable) where the width is left unspecified,
but the user hints what type of vectorization they prefer, either
fixed width or scalable.
I have implemented this by making use of the LLVM loop hint attribute:
llvm.loop.vectorize.scalable.enable
Tests were added to
clang/test/CodeGenCXX/pragma-loop.cpp
for both the 'fixed' and 'scalable' optional parameter.
See this thread for context: http://lists.llvm.org/pipermail/cfe-dev/2020-November/067262.html
Differential Revision: https://reviews.llvm.org/D89031
Like the VarDecl that gets its type updated based on an init-list, this
patch corrects the MaterializeTemporaryExpr's type to make sure it isn't
creating an incomplete type, which leads to a handful of CodeGen crashes
(see PR 47636).
Based on @rsmith 's comments on D88236
Differential Revision: https://reviews.llvm.org/D88298
This patch enables the Clang type __vector_pair and its associated LLVM
intrinsics even when MMA is disabled. With this patch, the type is now controlled
by the PPC paired-vector-memops option. The builtins and intrinsics will be
renamed to drop the mma prefix in another patch.
Differential Revision: https://reviews.llvm.org/D91819
As reported in PR48177, the type-deduction extraction ends up going into
an infinite loop when the type referred to has a recursive definition.
This stops recursing and just substitutes the type-source-info the
TypeLocBuilder identified when transforming the base.
The swift_attr attribute is a generic annotation attribute that's not used by clang,
but is used by the Swift compiler. The Swift compiler can use these annotations to provide
various syntactic and semantic sugars for the imported Objective-C API declarations.
Differential Revision: https://reviews.llvm.org/D92354
The original bug was discovered in T75057860. Clang front-end emits an AST that looks like this for an co_await expression:
|- ExprWithCleanups
|- -CoawaitExpr
|- -MaterializeTemporaryExpr ... Awaiter
...
|- -CXXMemberCallExpr ... .await_ready
...
|- -CallExpr ... __builtin_coro_resume
...
|- -CXXMemberCallExpr ... .await_resume
...
ExprWithCleanups is responsible for cleaning up (including calling dtors) for the temporaries generated in the wrapping expression).
In the above structure, the __builtin_coro_resume part (which corresponds to the code for the suspend case in the co_await with symmetric transfer), the pseudocode looks like this:
__builtin_coro_resume(
awaiter.await_suspend(
from_address(
__builtin_coro_frame())).address());
One of the temporaries that's generated as part of this code is the coroutine handle returned from awaiter.await_suspend() call. The call returns a handle which is a prvalue (since it's a returned value on the fly). In order to call the address() method on it, it needs to be converted into an xvalue. Hence a materialized temp is created to hold it. This temp will need to be cleaned up eventually. Now, since all cleanups happen at the end of the entire co_await expression, which is after the <coro.suspend> suspension point, the compiler will think that such a temp needs to live across suspensions, and need to be put on the coroutine frame, even though it's only used temporarily just to call address() method.
Such a phenomena not only unnecessarily increases the frame size, but can lead to ASAN failures, if the coroutine was already destroyed as part of the await_suspend() call. This is because if the coroutine was already destroyed, the frame no longer exists, and one can not store anything into it. But if the temporary object is considered to need to live on the frame, it will be stored into the frame after await_suspend() returns.
A fix attempt was done in https://reviews.llvm.org/D87470. Unfortunately it is incorrect. The reason is that cleanups in Clang works more like linearly than nested. There is one current state indicating whether it needs cleanup, and an ExprWithCleanups resets that state. This means that an ExprWithCleanups must be capable of cleaning up all temporaries created in the wrapping expression, otherwise there will be dangling temporaries cleaned up at the wrong place.
I eventually found a walk-around (https://reviews.llvm.org/D89066) that doesn't break any existing tests while fixing the issue. But it targets the final co_await only. If we ever have a co_await that's not on the final awaiter and the frame gets destroyed after suspend, we are in trouble. Hence we need a proper fix.
This patch is the proper fix. It does the folllowing things to fully resolve the issue:
1. The AST has to be generated in the order according to their nesting relationship. We should not generate AST out of order because then the code generator would incorrectly track the state of temporaries and when a cleanup is needed. So the code in buildCoawaitCalls is reorganized so that we will be generating the AST for each coawait member call in order along with their child AST.
2. await_ready() call is wrapped with an ExprWithCleanups so that temporaries in it gets cleaned up as early as possible to avoid living across suspension.
3. await_suspend() call is wrapped with an ExprWithCleanups if it's not a symmetric transfer. In the case of a symmetric transfer, in order to maintain the musttail call contract, the ExprWithCleanups is wraaped before the resume call.
4. In the end, we mark again that it needs a cleanup, so that the entire CoawaitExpr will be wrapped with a ExprWithCleanups which will clean up the Awaiter object associated with the await expression.
Differential Revision: https://reviews.llvm.org/D90990
Define the __vector_pair and __vector_quad types that are used to manipulate
the new accumulator registers introduced by MMA on PowerPC. Because these two
types are specific to PowerPC, they are defined in a separate new file so it
will be easier to add other PowerPC specific types if we need to in the future.
Differential Revision: https://reviews.llvm.org/D81508
Because of typo-correction, the AST can be transformed, and the transformed
AST is marginally useful for diagnostics purpose, the following
diagnostics usually do harm than good (easily cause confusions).
Given the following code:
```
void abcc();
void test() {
if (abc());
// diagnostic 1 (for the typo-correction): the typo is correct to `abcc()`, so the code is treate as `if (abcc())` in AST perspective;
// diagnostic 2 (for mismatch type): we perform an type-analysis on `if`, discover the type is not match
}
```
The secondary diagnostic "convertable to bool" is likely bogus to users.
The idea is to use RecoveryExpr (clang's dependent mechanism) to preserve the
recovery behavior but suppress all follow-up diagnostics.
Differential Revision: https://reviews.llvm.org/D89946
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
The dependent mechanism for C error-recovery is mostly finished,
this is the only place we have missed.
Differential Revision: https://reviews.llvm.org/D89045
This reapplies D88384 with the minor modification that an assertion was
changed to a regular conditional and graceful exit from
ASTContext::mergeTypes.
This test is going to be removed because using dynamic rounding mode
in initializers is changing. It also causes build failures in some
cases, so remove it now.
- Fix a memory leak accidentally introduced yesterday by using CodeGen's
existing mangling context instead of creating a new context afresh.
- Move GNU-runtime ObjC method mangling into the AST mangler; this will
eventually be necessary to support direct methods there, but is also
just the right architecture.
- Make the Apple-runtime method mangling work properly when given an
interface declaration, fixing a bug (which had solidified into a test)
where mangling a category method from the interface could cause it to
be mangled as if the category name was a class name. (Category names
are namespaced within their class and have no global meaning.)
- Fix a code cross-reference in dsymutil.
Based on a patch by Ellis Hoag.