Commit Graph

37 Commits

Author SHA1 Message Date
Chandler Carruth 9c4ed175c2 [PM] Port the PostOrderFunctionAttrs pass to the new pass manager and
convert one test to use this.

This is a particularly significant milestone because it required
a working per-function AA framework which can be queried over each
function from within a CGSCC transform pass (and additionally a module
analysis to be accessible). This is essentially *the* point of the
entire pass manager rewrite. A CGSCC transform is able to query for
multiple different function's analysis results. It works. The whole
thing appears to actually work and accomplish the original goal. While
we were able to hack function attrs and basic-aa to "work" in the old
pass manager, this port doesn't use any of that, it directly leverages
the new fundamental functionality.

For this to work, the CGSCC framework also has to support SCC-based
behavior analysis, etc. The only part of the CGSCC pass infrastructure
not sorted out at this point are the updates in the face of inlining and
running function passes that mutate the call graph.

The changes are pretty boring and boiler-plate. Most of the work was
factored into more focused preperatory patches. But this is what wires
it all together.

llvm-svn: 261203
2016-02-18 11:03:11 +00:00
Peter Collingbourne df49d1bbb2 WholeProgramDevirt: introduce.
This pass implements whole program optimization of virtual calls in cases
where we know (via bitset information) that the list of callees is fixed. This
includes the following:

- Single implementation devirtualization: if a virtual call has a single
  possible callee, replace all calls with a direct call to that callee.

- Virtual constant propagation: if the virtual function's return type is an
  integer <=64 bits and all possible callees are readnone, for each class and
  each list of constant arguments: evaluate the function, store the return
  value alongside the virtual table, and rewrite each virtual call as a load
  from the virtual table.

- Uniform return value optimization: if the conditions for virtual constant
  propagation hold and each function returns the same constant value, replace
  each virtual call with that constant.

- Unique return value optimization for i1 return values: if the conditions
  for virtual constant propagation hold and a single vtable's function
  returns 0, or a single vtable's function returns 1, replace each virtual
  call with a comparison of the vptr against that vtable's address.

Differential Revision: http://reviews.llvm.org/D16795

llvm-svn: 260312
2016-02-09 22:50:34 +00:00
Chandler Carruth 1926b70e37 [attrs] Split the late-revisit pattern for deducing norecurse in
a top-down manner into a true top-down or RPO pass over the call graph.

There are specific patterns of function attributes, notably the
norecurse attribute, which are most effectively propagated top-down
because all they us caller information.

Walk in RPO over the call graph SCCs takes the form of a module pass run
immediately after the CGSCC pass managers postorder walk of the SCCs,
trying again to deduce norerucrse for each singular SCC in the call
graph.

This removes a very legacy pass manager specific trick of using a lazy
revisit list traversed during finalization of the CGSCC pass. There is
no analogous finalization step in the new pass manager, and a lazy
revisit list is just trying to produce an RPO iteration of the call
graph. We can do that more directly if more expensively. It seems
unlikely that this will be the expensive part of any compilation though
as we never examine the function bodies here. Even in an LTO run over
a very large module, this should be a reasonable fast set of operations
over a reasonably small working set -- the function call graph itself.

In the future, if this really is a compile time performance issue, we
can look at building support for both post order and RPO traversals
directly into a pass manager that builds and maintains the PO list of
SCCs.

Differential Revision: http://reviews.llvm.org/D15785

llvm-svn: 257163
2016-01-08 10:55:52 +00:00
Chandler Carruth 3a040e6d47 [attrs] Extract the pure inference of function attributes into
a standalone pass.

There is no call graph or even interesting analysis for this part of
function attributes -- it is literally inferring attributes based on the
target library identification. As such, we can do it using a much
simpler module pass that just walks the declarations. This can also
happen much earlier in the pass pipeline which has benefits for any
number of other passes.

In the process, I've cleaned up one particular aspect of the logic which
was necessary in order to separate the two passes cleanly. It now counts
inferred attributes independently rather than just counting all the
inferred attributes as one, and the counts are more clearly explained.

The two test cases we had for this code path are both ... woefully
inadequate and copies of each other. I've kept the superset test and
updated it. We need more testing here, but I had to pick somewhere to
stop fixing everything broken I saw here.

Differential Revision: http://reviews.llvm.org/D15676

llvm-svn: 256466
2015-12-27 08:41:34 +00:00
Chandler Carruth f49f1a87ef [attrs] Split off the forced attributes utility into its own pass that
is (by default) run much earlier than FuncitonAttrs proper.

This allows forcing optnone or other widely impactful attributes. It is
also a bit simpler as the force attribute behavior needs no specific
iteration order.

I've added the pass into the default module pass pipeline and LTO pass
pipeline which mirrors where function attrs itself was being run.

Differential Revision: http://reviews.llvm.org/D15668

llvm-svn: 256465
2015-12-27 08:13:45 +00:00
Evgeniy Stepanov 67849d56c3 Cross-DSO control flow integrity (LLVM part).
An LTO pass that generates a __cfi_check() function that validates a
call based on a hash of the call-site-known type and the target
pointer.

llvm-svn: 255693
2015-12-15 23:00:08 +00:00
Mehdi Amini 42418aba58 Add a FunctionImporter helper to perform summary-based cross-module function importing
Summary:
This is a helper to perform cross-module import for ThinLTO. Right now
it is importing naively every possible called functions.

Reviewers: tejohnson

Subscribers: dexonsmith, llvm-commits

Differential Revision: http://reviews.llvm.org/D14914

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 253954
2015-11-24 06:07:49 +00:00
Justin Bogner 21e153748a [PM] Port StripDeadPrototypes to the new pass manager
This is a really straightforward port. Also adds a test for the pass,
since it only seemed to be tested tangentially before.

llvm-svn: 251726
2015-10-30 23:28:12 +00:00
Justin Bogner 48f1f885e3 Whitespace. NFC
llvm-svn: 251724
2015-10-30 23:02:38 +00:00
Diego Novillo 4d71113cdb Convert SampleProfile pass into a Module pass.
Eventually, we will need sample profiles to be incorporated into the
inliner's cost models.  To do this, we need the sample profile pass to
be a module pass.

This patch makes no functional changes beyond the mechanical adjustments
needed to run SampleProfile as a module pass.

llvm-svn: 245940
2015-08-25 15:25:11 +00:00
Rafael Espindola 237c3a6def Don't change the visibility when converting a definition to a declaration.
llvm-svn: 242030
2015-07-13 14:18:22 +00:00
Peter Collingbourne e6909c8e8b Introduce bitset metadata format and bitset lowering pass.
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.

The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.

Differential Revision: http://reviews.llvm.org/D7288

llvm-svn: 230054
2015-02-20 20:30:47 +00:00
Chandler Carruth 30d69c2e36 [PM] Remove the old 'PassManager.h' header file at the top level of
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.

This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.

The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".

llvm-svn: 229094
2015-02-13 10:01:29 +00:00
Duncan P. N. Exon Smith 4b4d8ecde1 Move -verify-use-list-order into llvm-uselistorder
Ugh.  Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though.  (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)

Create a new tool called llvm-uselistorder to use for verifying use-list
order.  For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.

This might be a better way to test use-list order anyway.

Part of PR5680.

llvm-svn: 213957
2014-07-25 17:13:03 +00:00
Duncan P. N. Exon Smith 6b6fdc992a IPO: Add use-list-order verifier
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.

  - The utility functions live in lib/IR/UseListOrder.cpp.

  - Moved (and renamed) the command-line option to enable writing
    use-lists, so that this pass can return early if the use-list orders
    aren't being serialized.

It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype.  I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.

This is part of PR5680.

llvm-svn: 213945
2014-07-25 14:49:26 +00:00
Tom Roeder 544d1c22be Removing spurious dependency of IPO on JumpInstrTables
llvm-svn: 210281
2014-06-05 19:43:57 +00:00
Tom Roeder 44cb65fff1 Add a new attribute called 'jumptable' that creates jump-instruction tables for functions marked with this attribute.
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.

This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.

llvm-svn: 210280
2014-06-05 19:29:43 +00:00
Hal Finkel 26fc4c29c6 Initialize the barrier pass llvm::initializeIPO
The barrier pass is a temporary hack, and should go away soon. Nevertheless, if
we don't initialize it, then opt will not understand -barrier, and this will
break bugpoint (because when it dumps the passes from the default pass manager
-barrier will be there).

llvm-svn: 197177
2013-12-12 20:45:08 +00:00
Rafael Espindola 282a47037b Use LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN instead of the "dso list".
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
  files.
* The linker tells LLVM which symbols are not used from other object files,
  but will be put in the dso symbol table if present.

GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.

LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.

This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
  global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.

llvm-svn: 193800
2013-10-31 20:51:58 +00:00
Rafael Espindola cda2911caa Optimize linkonce_odr unnamed_addr functions during LTO.
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.

The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).

llvm-svn: 191922
2013-10-03 18:29:09 +00:00
Filip Pizlo dec20e43c0 This patch breaks up Wrap.h so that it does not have to include all of
the things, and renames it to CBindingWrapping.h.  I also moved 
CBindingWrapping.h into Support/.

This new file just contains the macros for defining different wrap/unwrap 
methods.

The calls to those macros, as well as any custom wrap/unwrap definitions 
(like for array of Values for example), are put into corresponding C++ 
headers.

Doing this required some #include surgery, since some .cpp files relied 
on the fact that including Wrap.h implicitly caused the inclusion of a 
bunch of other things.

This also now means that the C++ headers will include their corresponding 
C API headers; for example Value.h must include llvm-c/Core.h.  I think 
this is harmless, since the C API headers contain just external function 
declarations and some C types, so I don't believe there should be any 
nasty dependency issues here.

llvm-svn: 180881
2013-05-01 20:59:00 +00:00
Eric Christopher 04d4e9312c Move C++ code out of the C headers and into either C++ headers
or the C++ files themselves. This enables people to use
just a C compiler to interoperate with LLVM.

llvm-svn: 180063
2013-04-22 22:47:22 +00:00
Rafael Espindola 4253bd8faf Change the internalize pass to internalize all symbols when given an empty
list of externals. This makes sense since a shared library with no symbols
can still be useful if it has static constructors.

llvm-svn: 166795
2012-10-26 18:47:48 +00:00
Craig Topper c74b600afb Fix filename in file header.
llvm-svn: 166004
2012-10-16 02:21:30 +00:00
Benjamin Kramer 5a656883b1 C API functions must be able to see their extern "C" definitions, or it will be impossible to call them from C.
llvm-svn: 138022
2011-08-19 01:36:54 +00:00
Bill Wendling 2d3138c112 Remove the LowerSetJmp pass. It wasn't used effectively by any of the targets.
This is some of my original LLVM code. *wipes tear*

llvm-svn: 136821
2011-08-03 22:18:20 +00:00
Rafael Espindola b84dc6bca8 Add LLVMAddAlwaysInlinerPass to the C API.
llvm-svn: 136083
2011-07-26 15:23:23 +00:00
Rafael Espindola be2fe29f9c LLVM 3.0 is here, remove old do nothing method.
llvm-svn: 136082
2011-07-26 15:17:32 +00:00
Chris Lattner b1ed91f397 Land the long talked about "type system rewrite" patch. This
patch brings numerous advantages to LLVM.  One way to look at it
is through diffstat:
 109 files changed, 3005 insertions(+), 5906 deletions(-)

Removing almost 3K lines of code is a good thing.  Other advantages
include:

1. Value::getType() is a simple load that can be CSE'd, not a mutating
   union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
   uniques them.  This means that the compiler doesn't merge them structurally
   which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
   struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
   in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead 
   "const Type *" everywhere.

Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.  
"LLVM 3.0" is the right time to do this.

There are still some cleanups pending after this, this patch is large enough
as-is.

llvm-svn: 134829
2011-07-09 17:41:24 +00:00
Chris Lattner e81d045d94 remove the StructRetPromotion pass. It is unused, not maintained and
has some bugs.  If this is interesting functionality, it should be 
reimplemented in the argpromotion pass.

llvm-svn: 129314
2011-04-11 23:09:44 +00:00
Chris Lattner 1e209b87ad remove the partial specialization pass. It is unmaintained and has bugs.
llvm-svn: 123554
2011-01-16 00:27:10 +00:00
Owen Anderson bf70a035f0 Add an initialization routine for libLLVMipo.a
llvm-svn: 115933
2010-10-07 18:09:59 +00:00
Wesley Peck a2ca3fa781 Adding IPSCCP and Internalize passes to the C-bindings
llvm-svn: 100893
2010-04-09 20:43:20 +00:00
Douglas Gregor 291f6145b8 Reverting 85714, 85715, 85716, which are breaking the build
llvm-svn: 85717
2009-11-01 16:42:53 +00:00
Dan Gohman 576ac96367 Remove the #include of Pass.h from PassManager.h. This breaks a significant
#include dependency, as frontends commonly pull in PassManager.h.

llvm-svn: 85714
2009-11-01 15:20:19 +00:00
Victor Hernandez e297149e26 Auto-upgrade free instructions to calls to the builtin free function.
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.

llvm-svn: 84987
2009-10-24 04:23:03 +00:00
Chris Lattner e48f897ca7 add a bunch more passes to the C bindings (PR3734), patch by
Lennart Augustsson!

llvm-svn: 66272
2009-03-06 16:52:18 +00:00