to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
In a lot of places an empty string was passed as the ErrorBanner to
logAllUnhandledErrors. This patch makes that argument optional to
simplify the call sites.
llvm-svn: 346604
Use getImageBase() helper to compute the image base. Fix various
offsets/addresses/masks so they're actually correct.
This allows decoding unwind info from DLLs, and unwind info from object
files containing multiple functions.
Differential Revision: https://reviews.llvm.org/D54015
llvm-svn: 346036
This patch adds support for dumping the unwind info from ARM64 COFF object
files.
Differential Revision: https://reviews.llvm.org/D53264
llvm-svn: 345108
a good error message to be produced.
This is nearly the last libObject interface that used ErrorOr and the last one
that appears in llvm/include/llvm/Object/MachO.h . For Mach-O objects this is
just a clean up because it’s version of getSymbolAddress() can’t return an
error.
I will leave it to the experts on COFF and ELF to actually add meaning full
error messages in their tests if they wish. And also leave it to these experts
to change the last two ErrorOr interfaces in llvm/include/llvm/Object/ObjectFile.h
for createCOFFObjectFile() and createELFObjectFile() if they wish.
Since there are no test cases for COFF and ELF error cases with respect to
getSymbolAddress() in the test suite this is no functional change (NFC).
llvm-svn: 273701
Produce another specific error message for a malformed Mach-O file when a symbol’s
section index is more than the number of sections. The existing test case in test/Object/macho-invalid.test
for macho-invalid-section-index-getSectionRawName now reports the error with the message indicating
that a symbol at a specific index has a bad section index and that bad section index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same.
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
"// TODO: Actually report errors helpfully" and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
llvm-svn: 268298
Produce another specific error message for a malformed Mach-O file when a symbol’s
string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test
for macho-invalid-symbol-name-past-eof now reports the error with the message indicating
that a symbol at a specific index has a bad sting index and that bad string index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same. There is some
code for this that could be factored into a routine but I would like to leave that for
the code owners post-commit to do as they want for handling an llvm::Error. An
example of how this could be done is shown in the diff in
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine
already for std::error_code so I added one like it for llvm::Error .
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there fixes needed to lld that goes along with this that I will commit right after this.
So expect lld not to built after this commit and before the next one.
llvm-svn: 266919
in the test suite. While this is not really an interesting tool and option to run
on a Mach-O file to show the symbol table in a generic libObject format
it shouldn’t crash.
The reason for the crash was in MachOObjectFile::getSymbolType() when it was
calling MachOObjectFile::getSymbolSection() without checking its return value
for the error case.
What makes this fix require a fair bit of diffs is that the method getSymbolType() is
in the class ObjectFile defined without an ErrorOr<> so I needed to add that all
the sub classes. And all of the uses needed to be updated and the return value
needed to be checked for the error case.
The MachOObjectFile version of getSymbolType() “can” get an error in trying to
come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol
symbol type is an N_SECT type because the code is trying to select from the
SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type.
And it needs the Mach-O section to use isData() and isBSS to determine if
it will return SymbolRef::ST_Data.
One other possible fix I considered is to simply return SymbolRef::ST_Other
when MachOObjectFile::getSymbolSection() returned an error. But since in
the past when I did such changes that “ate an error in the libObject code” I
was asked instead to push the error out of the libObject code I chose not
to implement the fix this way.
As currently written both the COFF and ELF versions of getSymbolType()
can’t get an error. But if isReservedSectionNumber() wanted to check for
the two known negative values rather than allowing all negative values or
the code wanted to add the same check as in getSymbolAddress() to use
getSection() and check for the error then these versions of getSymbolType()
could return errors.
At the end of the day the error printed now is the generic “Invalid data was
encountered while parsing the file” for object_error::parse_failed. In the
future when we thread Lang’s new TypedError for recoverable error handling
though libObject this will improve. And where the added // Diagnostic(…
comment is, it would be changed to produce and error message
like “bad section index (42) for symbol at index 8” for this case.
llvm-svn: 264187
This function can really fail since the string table offset can be out of
bounds.
Using ErrorOr makes sure the error is checked.
Hopefully a lot of the boilerplate code in tools/* can go away once we have
a diagnostic manager in Object.
llvm-svn: 241297
This is still a really odd function. Most calls are in object format specific
contexts and should probably be replaced with a more direct query, but at least
now this is not too obnoxious to use.
llvm-svn: 240777
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
There are two methods in SectionRef that can fail:
* getName: The index into the string table can be invalid.
* getContents: The section might point to invalid contents.
Every other method will always succeed and returning and std::error_code just
complicates the code. For example, a section can have an invalid alignment,
but if we are able to get to the section structure at all and create a
SectionRef, we will always be able to read that invalid alignment.
llvm-svn: 219314
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
Add a brief explanation of the data section layout for the unwind data that the
Windows on ARM EH models. This is simply to provide a rough idea of the layout
of the code involved in the decoding of the unwinding. Details on the involved
data structures are available in the associated support header. The bulk of it
is related to printing out the byte-code to help validate generation of WoA EH.
No functional change.
llvm-svn: 210397
Add support to llvm-readobj to decode Windows ARM Exception Handling data. This
uses the previously added datastructures to decode the information into a format
that can be used by tests. This is a necessary step to add support for emitting
Windows on ARM exception handling information.
A fair amount of formatting inspiration is drawn from the Win64 EH printer as
well as the ARM EHABI printer. This allows for a reasonably thorough look into
the encoded data.
llvm-svn: 210192