- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
to search for kexts on the local system -- the ModuleList FindModule()
method is the best first attempt, only call
Symbols::DownloadObjectAndSymbolFile() if that has failed and this
is the kernel binary which really needs to have its symbols located.
<rdar://problem/13241893>
llvm-svn: 175495
find a binary on the debugger-host during a kernel debug session
for a kernel extension (kext). This may prove to be too verbose
in typical usage, particularly if there are many third-party kexts.
We'll try this and see how it works.
<rdar://problem/13080833>
llvm-svn: 175494
a kernel binary - even if we can't find the symbol-rich binary or
dSYM on the debugger-system. Print a warning if the symbol-rich binary
cannot be located. This more closely emulates the gdb behavior when
a kernel debug session failed to locate a kernel binary.
<rdar://problem/13016095>
llvm-svn: 175491
of kernel extensions (kexts) that have been loaded into the kernel.
Now when we hit the "kexts have changed" breakpoint we can avoid
adding kexts multiple times, and can properly detect kext unloads
and remove them from the Target's list of modules.
<rdar://problem/13107639>
<rdar://problem/13191016>
llvm-svn: 175489
to have it not named appropriately. Also in StopInfoMachException, we aren't testing for software or not software, just
whether the thing is a breakpoint we set. So don't use "software"...
llvm-svn: 175241
Parse objective C information as efficiently as possible and without taking dangerous runtime locks.
Reworked the way objective C information is parsed by:
1 - don't read all class names up front, this is about 500K of data with names
2 - add a 32 bit hash map that maps a hash of a name to the Class pointer (isa)
3 - Improved name lookups by using the new hash map
4 - split up reading the objc runtime info into dynamic and shared cache since the shared cache only needs to be read once.
5 - When reading all isa values, also get the 32 bit hash instead of the name
6 - Read names lazily now that we don't need all names up front
7 - Allow the hash maps to not be there and still have this function correctly
There is dead code in here with all of the various methods I tried. I want to check this in first to not lose any of it in case we need to revert to any of the extra code. I will promptly cleanup and commit again.
llvm-svn: 175101
changing the ClangASTSource to return a bool instead
of returning a list of results. Our testsuite mostly
works with this change, but some minor issues may
remain both on LLDB's side and on Clang's side.
llvm-svn: 174949
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
if it encountered bad debug information. This
debug information had an Objective-C method whose
selector disagreed with the true number of arguments
to that method.
<rdar://problem/12992864>
llvm-svn: 174557
lldb was mmap'ing archive files once per .o file it loads, now it correctly shares the archive between modules.
LLDB was also always mapping entire contents of universal mach-o files, now it maps just the slice that is required.
Added a new logging channel for "lldb" called "mmap" to help track future regressions.
Modified the ObjectFile and ObjectContainer plugin interfaces to take a data offset along with the file offset and size so we can implement the correct caching and efficient reading of parts of files without mmap'ing the entire file like we used to.
The current implementation still keeps entire .a files mmaped (once) and entire slices from universal files mmaped to ensure that if a client builds their binaries during a debug session we don't lose our data and get corrupt object file info and debug info.
llvm-svn: 174524
The first part of the fix for having LLDB handle LTO debugging when the DWARF is in the .o files. This part separates the object file's modules into a separate cache map that maps unique C strings for the N_OSO path to the ModuleSP since one object file might be mentioned more than once in LTO binaries.
llvm-svn: 174476
function stub routine addresses from an in-memory-only
MachO object file. This was the only remaining part of
ParseSymtab() that was assuming a file exists.
<rdar://problem/13139585>
llvm-svn: 174455
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Enhance lldb so it can search for a kernel in memory when attaching
to a remote system. Remove some of the code that was doing this
from ProcessMachCore and ProcessGDBRemote and put it in
DynamicLoaderDarwinKernel.
I've added a new setting, plugin.dynamic-loader.darwin-kernel.scan-type
which can be set to
none - for environments where reading random memory can cause a
device crash
basic - look at one fixed location in memory for a kernel load address,
plus the contents of that address
fast-scan - the default, tries "basic" and then looks for the kernel's
mach header near the current pc value when lldb connects
exhaustive-scan - on 32-bit targets, step through the entire range where
the kernel can be loaded, looking for the kernel binary
I don't have the setting set up correctly right now, I'm getting back unexpected
values from the Property system, but I'll figure that out tomorrow and fix.
Besides that, all of the different communication methods / types of kernels
appear to be working correctly with these changes.
llvm-svn: 173891
Cleaned up the objective C name parsing code to use a class.
Now breakpoints that are set by name that are objective C methods without the leading '+' or '-' will resolve. We do this by expanding all the objective C names for a given string. For example:
(lldb) b [MyString cStringUsingEncoding:]
Will set a breakpoint with multiple possible names:
-[MyString cStringUsingEncoding:]
+[MyString cStringUsingEncoding:]
Also if you have a category, it will strip the category and set a breakpoint in all variants:
(lldb) [MyString(my_category) cStringUsingEncoding:]
Will resolve to the following names:
-[MyString(my_category) cStringUsingEncoding:]
+[MyString(my_category) cStringUsingEncoding:]
-[MyString cStringUsingEncoding:]
+[MyString cStringUsingEncoding:]
Likewise when we have:
(lldb) b -[MyString(my_category) cStringUsingEncoding:]
It will resolve to two names:
-[MyString(my_category) cStringUsingEncoding:]
-[MyString cStringUsingEncoding:]
llvm-svn: 173858
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728
Add the ability to give breakpoints a "kind" string, and have the StopInfoBreakpoint
print that in the brief description if set. Also print the kind - if set - in the breakpoint
listing.
Give kinds to a bunch of the internal breakpoints.
We were deleting the Mac OS X dynamic loader breakpoint as though the id we had stored away was
a breakpoint site ID, but in fact it was a breakpoint id, so we never actually deleted it. Fixed that.
llvm-svn: 173555
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Change the GDBRemoteRegisterContext::AddRegister function to take
its RegisterInfo argument by value instead of using a reference -
it will modify the object and modifying the contents of the
g_register_infos table in GDBRemoteRegisterContext.cpp can cause a
crash the next time we step through it.
llvm-svn: 173406
Extending ValueObjectDynamicValue so that it stores a TypeAndOrName instead of a TypeSP.
This change allows us to reflect the notion that a ValueObject can have a dynamic type for which we have no debug information.
Previously, we would coalesce that to the static type of the object, potentially losing relevant information or even getting it wrong.
This fix ensures we can correctly report the class name for Cocoa objects whose types are hidden classes that we know nothing about (e.g. __NSArrayI for immutable arrays).
As a side effect, our --show-types argument to frame variable no longer needs to append custom dynamic type information.
llvm-svn: 173216
Fixed the 32, 16, and 8 bit pseudo regs for x86_64 (real reg of "rax" which subvalues "eax", "ax", etc...) to correctly get updated when stepping. Also fixed it so actual registers can specify what other registers must be invalidated when a register is modified. Previously, only pseudo registers could invalidate other registers.
Modified the LLDB qRegisterInfo extension to the GDB remote interface to support specifying the containing registers with the new "container-regs" key whose value is a comma separated list of register numbers. Also added a "invalidate-regs" key whose value is also a comma separated list of register numbers.
Removed the hack GDBRemoteDynamicRegisterInfo::Addx86_64ConvenienceRegisters() function and modified "debugserver" to specify the registers correctly using the new "container-regs" and "invalidate-regs" keys.
llvm-svn: 173096
Modify UnwindLLDB::SearchForSavedLocationForRegister so if the register
save locations for a register mid-stack is in another register (or in the
same register, indicating the reg wasn't modified in this frame), don't
return that as a found location. Keep iterating down the array of frames
until a concrete location/value for the register is found, or until we
get to frame 0 where the reg value can be used as-is.
If lldb was trying to backtrace a program that blew out its stack via
recursion and the unwind instructions had some kind of
this-reg-is-saved-in-that-reg instruction, lldb would revert to doing
a recursive search for a concrete value and blow out its own stack.
llvm-svn: 172887
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873