For sampleFDO, because the optimized build uses profile generated from previous
release, often we couldn't tell a function without profile was truely cold or
just newly created so we had to treat them conservatively and put them in .text
section instead of .text.unlikely. The result was when we persue the best
performance by locking .text.hot and .text in memory, we wasted a lot of memory
to keep cold functions inside. This problem has been largely solved for regular
sampleFDO using profile-symbol-list (https://reviews.llvm.org/D66374), but for
the case when we use partial profile, we still waste a lot of memory because
of it.
In https://reviews.llvm.org/D62540, we propose to save functions with unknown
hotness information in a special section called ".text.unknown", so that
compiler will treat those functions as luck-warm, but runtime can choose not
to mlock the special section in memory or use other strategy to save memory.
That will solve most of the memory problem even if we use a partial profile.
The patch adds the support in lld for the special section.For sampleFDO,
because the optimized build uses profile generated from previous release,
often we couldn't tell a function without profile was truely cold or just
newly created so we had to treat them conservatively and put them in .text
section instead of .text.unlikely. The result was when we persue the best
performance by locking .text.hot and .text in memory, we wasted a lot of
memory to keep cold functions inside. This problem has been largely solved
for regular sampleFDO using profile-symbol-list
(https://reviews.llvm.org/D66374), but for the case when we use partial
profile, we still waste a lot of memory because of it.
In https://reviews.llvm.org/D62540, we propose to save functions with unknown
hotness information in a special section called ".text.unknown", so that
compiler will treat those functions as luck-warm, but runtime can choose not
to mlock the special section in memory or use other strategy to save memory.
That will solve most of the memory problem even if we use a partial profile.
The patch adds the support in lld for the special section.
Differential Revision: https://reviews.llvm.org/D79590
Essentially takes the lld/Common/Threads.h wrappers and moves them to
the llvm/Support/Paralle.h algorithm header.
The changes are:
- Remove policy parameter, since all clients use `par`.
- Rename the methods to `parallelSort` etc to match LLVM style, since
they are no longer C++17 pstl compatible.
- Move algorithms from llvm::parallel:: to llvm::, since they have
"parallel" in the name and are no longer overloads of the regular
algorithms.
- Add range overloads
- Use the sequential algorithm directly when 1 thread is requested
(skips task grouping)
- Fix the index type of parallelForEachN to size_t. Nobody in LLVM was
using any other parameter, and it made overload resolution hard for
for_each_n(par, 0, foo.size(), ...) because 0 is int, not size_t.
Remove Threads.h and update LLD for that.
This is a prerequisite for parallel public symbol processing in the PDB
library, which is in LLVM.
Reviewed By: MaskRay, aganea
Differential Revision: https://reviews.llvm.org/D79390
Sections with the SHF_LINK_ORDER flag must be ordered in the same relative
order as the Sections they have a link to. When using a linker script an
arbitrary expression may be used for the virtual address of the
OutputSection. In some cases the virtual address does not monotonically
increase as the OutputSection index increases, so if we base the ordering
of the SHF_LINK_ORDER sections on the index then we can get the order
wrong. We fix this by moving SHF_LINK_ORDER resolution till after we have
created OutputSection virtual addresses.
Differential Revision: https://reviews.llvm.org/D79286
The current implementation assumes that R_PPC64_TOC16_HA is always followed
by R_PPC64_TOC16_LO_DS. This can break with R_PPC64_TOC16_LO:
// Load the address of the TOC entry, instead of the value stored at that address
addis 3, 2, .LC0@tloc@ha # R_PPC64_TOC16_HA
addi 3, 3, .LC0@tloc@l # R_PPC64_TOC16_LO
blr
which is used by boringssl's util/fipstools/delocate/delocate.go
https://github.com/google/boringssl/blob/master/crypto/fipsmodule/FIPS.md has some documentation.
In short, this tool converts an assembly file to avoid any potential relocations.
The distance to an input .toc is not a constant after linking, so it cannot use an `addis;ld` pair.
Instead, it jumps to a stub which loads the TOC entry address with `addis;addi`.
This patch checks the presence of R_PPC64_TOC16_LO and suppresses
toc-indirect to toc-relative relaxation if R_PPC64_TOC16_LO is seen.
This approach is conservative and loses some relaxation opportunities but is easy to implement.
addis 3, 2, .LC0@toc@ha # no relaxation
addi 3, 3, .LC0@toc@l # no relaxation
li 9, 0
addis 4, 2, .LC0@toc@ha # can relax but suppressed
ld 4, .LC0@toc@l(4) # can relax but suppressed
Also note that interleaved R_PPC64_TOC16_HA and R_PPC64_TOC16_LO_DS is
possible and this patch accounts for that.
addis 3, 2, .LC1@toc@ha # can relax
addis 4, 2, .LC2@toc@ha # can relax
ld 3, .LC1@toc@l(3) # can relax
ld 4, .LC2@toc@l(4) # can relax
Reviewed By: #powerpc, sfertile
Differential Revision: https://reviews.llvm.org/D78431
gold has an option --print-symbol-counts= which prints:
// For each archive
archive $archive $members $fetched_members
// For each object file
symbols $object $defined_symbols $used_defined_symbols
In most cases, `$defined_symbols = $used_defined_symbols` unless weak
symbols are present. Strangely `$used_defined_symbols` includes symbols defined relative to --gc-sections discarded sections.
The `symbols` lines do not appear to be useful.
`archive` lines are useful: `$fetched_members=0` lines correspond to
unused archives. The information can be used to trim dependencies.
This patch implements --print-archive-stats= which prints the number of
members and the number of fetched members for each archive.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D78983
GNU tools generate mapping symbols "$d" for .ARM.exidx sections. The
symbols are added to the symbol table much earlier than the merging
takes place, and after that, they become dangling. Before the patch,
LLD output those symbols as SHN_ABS with the value of 0. The patch
removes such symbols from the symbol table.
Differential Revision: https://reviews.llvm.org/D78820
When discarding local symbols with --discard-all or --discard-locals,
the ones which are used in relocations should be preserved. LLD used
the simplest approach and just ignored those switches when -r or
--emit-relocs was specified.
The patch implements handling the --discard-* switches for the cases
when relocations are kept by identifying used local symbols and allowing
removing only unused ones. This makes the behavior of LLD compatible
with GNU linkers.
Differential Revision: https://reviews.llvm.org/D77807
Fixed error detected by msan. The size field of the .ARM.exidx synthetic
section needs to be initialized to at least estimation level before
calling assignAddresses as that will use the size field.
This was previously reverted in 1ca16fc4f5.
Differential Revision: https://reviews.llvm.org/D78422
This reverts commit f969c2aa65.
There are some msan buildbot failures sanitzer-x86_64-linux-fast that
I need to investigate.
Differential Revision: https://reviews.llvm.org/D78422
The contents of the .ARM.exidx section must be ordered by SHF_LINK_ORDER
rules. We don't need to know the precise address for this order, but we
do need to know the relative order of sections. We have been using the
sectionIndex for this purpose, this works when the OutputSection order
has a monotonically increasing virtual address, but it is possible to
write a linker script with non-monotonically increasing virtual address.
For these cases we need to evaluate the base address of the OutputSection
so that we can order the .ARM.exidx sections properly.
This change moves the finalisation of .ARM.exidx till after the first
call to AssignAddresses. This permits us to sort on virtual address which
is linker script safe. It also permits a fix for part of pr44824 where
we generate .ARM.exidx section for the vector table when that table is so
far away it is out of range of the .ARM.exidx section. This fix will come
in a follow up patch.
Differential Revision: https://reviews.llvm.org/D78422
This fixes a bug as exposed by D77807.
Add tests for {--emit-relocs,-r} x {--discard-locals,--discard-all}. They add coverage for previously undertested cases:
* STT_SECTION associated to GCed sections (`gc`)
* STT_SECTION associated to retained sections (`text`)
* STT_SECTION associated to non-SHF_ALLOC sections (`.comment`)
* STB_LOCAL in GCed sections (`unused_gc`)
Reviewed By: grimar, ikudrin
Differential Revision: https://reviews.llvm.org/D78389
This is part of the Propeller framework to do post link code layout
optimizations. Please see the RFC here:
https://groups.google.com/forum/#!msg/llvm-dev/ef3mKzAdJ7U/1shV64BYBAAJ and the
detailed RFC doc here:
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
This patch adds lld support for basic block sections and performs relaxations
after the basic blocks have been reordered.
After the linker has reordered the basic block sections according to the
desired sequence, it runs a relaxation pass to optimize jump instructions.
Currently, the compiler emits the long form of all jump instructions. AMD64 ISA
supports variants of jump instructions with one byte offset or a four byte
offset. The compiler generates jump instructions with R_X86_64 32-bit PC
relative relocations. We would like to use a new relocation type for these jump
instructions as it makes it easy and accurate while relaxing these instructions.
The relaxation pass does two things:
First, it deletes all explicit fall-through direct jump instructions between
adjacent basic blocks. This is done by discarding the tail of the basic block
section.
Second, If there are consecutive jump instructions, it checks if the first
conditional jump can be inverted to convert the second into a fall through and
delete the second.
The jump instructions are relaxed by using jump instruction mods, something
like relocations. These are used to modify the opcode of the jump instruction.
Jump instruction mods contain three values, instruction offset, jump type and
size. While writing this jump instruction out to the final binary, the linker
uses the jump instruction mod to determine the opcode and the size of the
modified jump instruction. These mods are required because the input object
files are memory-mapped without write permissions and directly modifying the
object files requires copying these sections. Copying a large number of basic
block sections significantly bloats memory.
Differential Revision: https://reviews.llvm.org/D68065
The default GNU linker script uses the following idiom for the array
sections. I'll use .init_array here, but this also applies to
.preinit_array and .fini_array sections.
.init_array :
{
PROVIDE_HIDDEN (__init_array_start = .);
KEEP (*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
}
The C-library will take references to the _start and _end symbols to
process the array. This will make LLD keep the OutputSection even if there
are no .init_array sections. As the current check for RELRO uses the
section type for .init_array the above example with no .init_array
InputSections fails the checks as there are no .init_array sections to give
the OutputSection a type of SHT_INIT_ARRAY. This often leads to a
non-contiguous RELRO error message.
The simple fix is to a textual section match as well as a section type
match.
Differential Revision: https://reviews.llvm.org/D76915
Currently, `error: incompatible section flags for .rodata` is reported
when we mix SHF_LINK_ORDER and non-SHF_LINK_ORDER sections in an output section.
This is overconstrained. This patch allows mixed flags with the
requirement that SHF_LINK_ORDER sections must be contiguous. Mixing
flags is used by Linux aarch64 (https://github.com/ClangBuiltLinux/linux/issues/953)
.init.data : { ... KEEP(*(__patchable_function_entries)) ... }
When the integrated assembler is enabled, clang's -fpatchable-function-entry=N[,M]
implementation sets the SHF_LINK_ORDER flag (D72215) to fix a number of
garbage collection issues.
Strictly speaking, the ELF specification does not require contiguous
SHF_LINK_ORDER sections but for many current uses of SHF_LINK_ORDER like
.ARM.exidx/__patchable_function_entries there has been a requirement for
the sections to be contiguous on top of the requirements of the ELF
specification.
This patch also imposes one restriction: SHF_LINK_ORDER sections cannot
be separated by a symbol assignment or a BYTE command. Not allowing BYTE
is a natural extension that a non-SHF_LINK_ORDER cannot be a separator.
Symbol assignments can delimiter the contents of SHF_LINK_ORDER
sections. Allowing SHF_LINK_ORDER sections across symbol assignments
(especially __start_/__stop_) can make things hard to explain. The
restriction should not be a problem for practical use cases.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D77007
This behavior matches GNU ld and seems reasonable.
```
// If a SECTIONS command is not specified
.text.* -> .text
.rodata.* -> .rodata
.init_array.* -> .init_array
```
A proposed Linux feature CONFIG_FG_KASLR may depend on the GNU ld behavior.
Reword a comment about -z keep-text-section-prefix and a comment about
CommonSection (deleted by rL286234).
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D75225
Hexagon ABI specifies that call x@gdplt is transformed to call __tls_get_addr.
Example:
call x@gdplt
is changed to
call __tls_get_addr
When x is an external tls variable.
Differential Revision: https://reviews.llvm.org/D74443
-M output can be useful when diagnosing an "error: output file too large" problem (emitted in openFile()).
I just ran into such a situation where I had to debug an erronerous
Linux kernel linker script. It tried to create a file larger than
INT64_MAX bytes.
This patch could have helped https://bugs.llvm.org/show_bug.cgi?id=44715 as well.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D75966
See `docs/ELF/linker_script.rst` for the new computation for sh_addr and sh_addralign.
`ALIGN(section_align)` now means: "increase alignment to section_align"
(like yet another input section requirement).
The "start of section .foo changes from 0x11 to 0x20" warning no longer
makes sense. Change it to warn if sh_addr%sh_addralign!=0.
To decrease the alignment from the default max_input_align,
use `.output ALIGN(8) : {}` instead of `.output : ALIGN(8) {}`
See linkerscript/section-address-align.test as an example.
When both an output section address and ALIGN are set (can be seen as an
"undefined behavior" https://sourceware.org/ml/binutils/2020-03/msg00115.html),
lld may align more than GNU ld, but it makes a linker script working
with GNU ld hard to break with lld.
This patch can be considered as restoring part of the behavior before D74736.
Differential Revision: https://reviews.llvm.org/D75724
This makes --orphan-handling= less noisy.
This change also improves our compatibility with GNU ld.
GNU ld special cases .symtab, .strtab and .shstrtab . We need output section
descriptions for .symtab, .strtab and .shstrtab to suppress:
<internal>:(.symtab) is being placed in '.symtab'
<internal>:(.shstrtab) is being placed in '.shstrtab'
<internal>:(.strtab) is being placed in '.strtab'
With --strip-all, .symtab and .strtab can be omitted (note, --strip-all is not compatible with --emit-relocs).
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D75149
With this --shuffle-sections=seed produces the same result in every
host.
Reviewed By: grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D74971
When the output section address (addrExpr) is specified, GNU ld warns if
sh_addr is different. This patch implements the warning.
Note, LinkerScript::assignAddresses can be called more than once. We
need to record the changed section addresses, and only report the
warnings after the addresses are finalized.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D74741
Follow-up for D74286.
Notations:
* alignExpr: the computed ALIGN value
* max_input_align: the maximum of input section alignments
This patch changes the following two cases to match GNU ld:
* When ALIGN is present, GNU ld sets output sh_addr to alignExpr, while lld use max(alignExpr, max_input_align)
* When addrExpr is specified but alignExpr is not, GNU ld sets output sh_addr to addrExpr, while lld uses `advance(0, max_input_align)`
Note, sh_addralign is still set to max(alignExpr, max_input_align).
lma-align.test is enhanced a bit to check we don't overalign sh_addr.
fixSectionAlignments() sets addrExpr but not alignExpr for the `!hasSectionsCommand` case.
This patch sets alignExpr as well so that max_input_align will be respected.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D74736
Summary:
This option causes lld to shuffle sections by assigning different
priorities in each run.
The use case for this is to introduce randomization in benchmarks. The
idea is inspired by the paper "Producing Wrong Data Without Doing
Anything Obviously Wrong!"
(https://www.inf.usi.ch/faculty/hauswirth/publications/asplos09.pdf). Unlike
the paper, we shuffle individual sections, not just input files.
Doing this in lld is particularly convenient as the --reproduce option
makes it easy to collect all the necessary bits for relinking the
program being benchmarked. Once that it is done, all that is needed is
to add --shuffle-sections=0 to the response file and relink before each
run of the benchmark.
Differential Revision: https://reviews.llvm.org/D74791
D43468+D44380 added INSERT [AFTER|BEFORE] for non-orphan sections. This patch
makes INSERT work for orphan sections as well.
`SECTIONS {...} INSERT [AFTER|BEFORE] .foo` does not set `hasSectionCommands`, so the result
will be similar to a regular link without a linker script. The differences when `hasSectionCommands` is set include:
* image base is different
* -z noseparate-code/-z noseparate-loadable-segments are unavailable
* some special symbols such as `_end _etext _edata` are not defined
The behavior is similar to GNU ld:
INSERT is not considered an external linker script.
This feature makes the section layout more flexible. It can be used to:
* Place .nv_fatbin before other readonly SHT_PROGBITS sections to mitigate relocation overflows.
* Disturb the layout to expose address sensitive application bugs.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D74375
GNU ld has a counterintuitive lang_propagate_lma_regions rule.
```
// .foo's LMA region is propagated to .bar because their VMA region is the same,
// and .bar does not have an explicit output section address (addr_tree).
.foo : { *(.foo) } >RAM AT> FLASH
.bar : { *(.bar) } >RAM
// An explicit output section address disables propagation.
.foo : { *(.foo) } >RAM AT> FLASH
.bar . : { *(.bar) } >RAM
```
In both cases, lld thinks .foo's LMA region is propagated and
places .bar in the same PT_LOAD, so lld diverges from GNU ld w.r.t. the
second case (lma-align.test).
This patch changes Writer<ELFT>::createPhdrs to disable propagation
(start a new PT_LOAD). A user of the first case can make linker scripts
portable by explicitly specifying `AT>`. By contrast, there was no
workaround for the old behavior.
This change uncovers another LMA related bug in assignOffsets() where
`ctx->lmaOffset = 0;` was omitted. It caused a spurious "load address
range overlaps" error for at2.test
The new PT_LOAD rule is complex. For convenience, I listed the origins of some subexpressions:
* rL323449: `sec->memRegion == load->firstSec->memRegion`; linkerscript/at3.test
* D43284: `load->lastSec == Out::programHeaders` (don't start a new PT_LOAD after program headers); linkerscript/at4.test
* D58892: `sec != relroEnd` (start a new PT_LOAD after PT_GNU_RELRO)
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D74297
This adds some of LLD specific scopes and picks up optimisation scopes
via LTO/ThinLTO. Makes use of TimeProfiler multi-thread support added in
77e6bb3c.
Differential Revision: https://reviews.llvm.org/D71060
`{clang,gcc} -nostdlib -r a.c` passes --dynamic-linker to the linker,
and the expected behavior is to ignore it.
If .interp is kept in the relocatable object file, a final link will get
PT_INTERP even if --dynamic-linker is not specified. glibc ld.so expects
to see PT_DYNAMIC and the executable will likely fail to run.
Ignore --dynamic-linker in -r mode as well as -shared.
This patch is a joint work by Rui Ueyama and me based on D58102 by Xiang Zhang.
It adds Intel CET (Control-flow Enforcement Technology) support to lld.
The implementation follows the draft version of psABI which you can
download from https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.
CET introduces a new restriction on indirect jump instructions so that
you can limit the places to which you can jump to using indirect jumps.
In order to use the feature, you need to compile source files with
-fcf-protection=full.
* IBT is enabled if all input files are compiled with the flag. To force enabling ibt, pass -z force-ibt.
* SHSTK is enabled if all input files are compiled with the flag, or if -z shstk is specified.
IBT-enabled executables/shared objects have two PLT sections, ".plt" and
".plt.sec". For the details as to why we have two sections, please read
the comments.
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D59780
This restores commit 1417558e4a and its follow-up, reverted by commit c3dbd782f1.
After this commit:
clang -fuse-ld=bfd -no-pie -nostdlib a.c => .interp not created
clang -fuse-ld=bfd -pie -fPIE -nostdlib a.c => .interp created
clang -fuse-ld=gold -no-pie -nostdlib a.c => .interp not created
clang -fuse-ld=gold -pie -fPIE -nostdlib a.c => .interp created
clang -fuse-ld=lld -no-pie -nostdlib a.c => .interp created
clang -fuse-ld=lld -pie -fPIE -nostdlib a.c => .interp created
This reverts commit 1417558e4a.
Also reverts commit 019a92bb28.
This causes check-sanitizer to fail. The "-Nolib" variant of the test
crashes on startup in the loader.
Similar to rL362355, but with the `!config->shared` guard.
(1) {gcc,clang} -fuse-ld=bfd -pie -fPIE -nostdlib a.c => .interp created
(2) {gcc,clang} -fuse-ld=lld -pie -fPIE -nostdlib a.c => .interp not created
(3) {gcc,clang} -fuse-ld=lld -pie -fPIE -nostdlib a.c a.so => .interp created
The inconsistency of (2) is due to the condition `!Config->SharedFiles.empty()`.
To make lld behave more like ld.bfd, we could change the condition to:
config->hasDynSymTab && !config->dynamicLinker.empty() && script->needsInterpSection();
However, that would bring another inconsistency as can be observed with:
(4) {gcc,clang} -fuse-ld=bfd -no-pie -nostdlib a.c => .interp not created
PltSection is used by both PLT and IPLT. The PLT section may have a
header while the IPLT section does not. Split off IpltSection from
PltSection to be clearer.
Unlike other targets, PPC64 cannot use the same code sequence for PLT
and IPLT. This helps make a future PPC64 patch (D71509) more isolated.
On EM_386 and EM_X86_64, when PLT is empty while IPLT is not, currently
we are inconsistent whether the PLT header is conceptually attached to
in.plt or in.iplt . Consistently attach the header to in.plt can make
the -z retpolineplt logic simpler. It also makes `jmp` point to an
aesthetically better place for non-retpolineplt cases.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71519
The PT_GNU_PROPERTY program header describes the location of the
.note.gnu.property SHT_NOTES section. The linux kernel uses this program
header to find the .note.gnu.property section rather than parsing.
Executables that have properties that the kernel needs to act on that don't
have the PT_GNU_PROPERTY program header will not boot.
Differential Revision: https://reviews.llvm.org/D70961
D62381 introduced forEachSymbol(). It seems that many call sites cannot
be parallelized because the body shared some states. Replace
forEachSymbol with iterator_range<filter_iterator<...>> symbols() to
simplify code and improve debuggability (std::function calls take some
frames).
It also allows us to use early return to simplify code added in D69650.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D70505
Summary:
Add a flag `F_no_mmap` to `FileOutputBuffer` to support
`--[no-]mmap-output-file` in ELF LLD. LLD currently explicitly ignores
this flag for compatibility with GNU ld and gold.
We need this flag to speed up link time for large binaries in certain
scenarios. When we link some of our larger binaries we find that LLD
takes 50+ GB of memory, which causes memory pressure. The memory
pressure causes the VM to flush dirty pages of the output file to disk.
This is normally okay, since we should be flushing cold pages. However,
when using BtrFS with compression we need to write 128KB at a time when
we flush a page. If any page in that 128KB block is written again, then
it must be flushed a second time, and so on. Since LLD doesn't write
sequentially this causes write amplification. The same 128KB block will
end up being flushed multiple times, causing the linker to many times
more IO than necessary. We've observed 3-5x faster builds with
-no-mmap-output-file when we hit this scenario.
The bad scenario only applies to compressed filesystems, which group
together multiple pages into a single compressed block. I've tested
BtrFS, but the problem will be present for any compressed filesystem
on Linux, since it is caused by the VM.
Silently ignoring --no-mmap-output-file caused a silent regression when
we switched from gold to lld. We pass --no-mmap-output-file to fix this
edge case, but since lld silently ignored the flag we didn't realize it
wasn't being respected.
Benchmark building a 9 GB binary that exposes this edge case. I linked 3
times with --mmap-output-file and 3 times with --no-mmap-output-file and
took the average. The machine has 24 cores @ 2.4 GHz, 112 GB of RAM,
BtrFS mounted with -compress-force=zstd, and an 80% full disk.
| Mode | Time |
|---------|-------|
| mmap | 894 s |
| no mmap | 126 s |
When compression is disabled, BtrFS performs just as well with and
without mmap on this benchmark.
I was unable to reproduce the regression with any binaries in
lld-speed-test.
Reviewed By: ruiu, MaskRay
Differential Revision: https://reviews.llvm.org/D69294
Add a new '-z nognustack' option that suppresses emitting PT_GNU_STACK
segment. This segment is not supported at all on NetBSD (stack is
always non-executable), and the option is meant to be used to disable
emitting it.
Differential Revision: https://reviews.llvm.org/D56554
This makes it clear `ELF/**/*.cpp` files define things in the `lld::elf`
namespace and simplifies `elf::foo` to `foo`.
Reviewed By: atanasyan, grimar, ruiu
Differential Revision: https://reviews.llvm.org/D68323
llvm-svn: 373885
Our .interp section is not a SyntheticSection. As a result, it terminates the
loop in removeUnusedSyntheticSections(). This has at least two consequences:
- The synthetic .bss and .bss.rel.ro sections are always present in
dynamically linked executables, even when they are not needed.
- The synthetic .ARM.exidx (and possibly other) sections are always present
in partitions other than the last one, even when not needed.
.ARM.exidx in particular is problematic because it assumes that its
list of code sections is non-empty in getLinkOrderDep(), which can
lead to a crash if the partition does not have any code sections.
Fix these problems by moving the creation of the .interp sections to the
top of createSyntheticSections(). While here, make the code a little less
error-prone by changing the add() lambdas to take a SyntheticSection instead
of an InputSectionBase.
Differential Revision: https://reviews.llvm.org/D68256
llvm-svn: 373347
D64906 allows PT_LOAD to have overlapping p_offset ranges. In the
default R RX RW RW layout + -z noseparate-code case, we do not tail pad
segments when transiting to another segment. This can save at most
3*maxPageSize bytes.
a) Before D64906, we tail pad R, RX and the first RW.
b) With -z separate-code, we tail pad R and RX, but not the first RW (RELRO).
In some cases, b) saves one file page. In some cases, b) wastes one
virtual memory page. The waste is a concern on Fuchsia. Because it uses
compressed binaries, it doesn't benefit from the saved file page.
This patch adds -z separate-loadable-segments to restore the behavior before
D64906. It can affect section addresses and can thus be used as a
debugging mechanism (see PR43214 and ld.so partition bug in
crbug.com/998712).
Reviewed By: jakehehrlich, ruiu
Differential Revision: https://reviews.llvm.org/D67481
llvm-svn: 372807
Fixes PR38748
mergeSections() calls getOutputSectionName() to get output section
names. Two MergeInputSections may be merged even if they are made
different by SECTIONS commands.
This patch moves mergeSections() after processSectionCommands() and
addOrphanSections() to fix the issue. The new pass is renamed to
OutputSection::finalizeInputSections().
processSectionCommands() and addorphanSections() are changed to add
sections to InputSectionDescription::sectionBases.
finalizeInputSections() merges MergeInputSections and migrates
`sectionBases` to `sections`.
For the -r case, we drop an optimization that tries keeping sh_entsize
non-zero. This is for the simplicity of addOrphanSections(). The
updated merge-entsize2.s reflects the change.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D67504
llvm-svn: 372734
Summary:
If st_link(A)=B, and A has the SHF_LINK_ORDER flag, we may dereference
a null pointer if B is garbage collected (PR43147):
1. In Wrter.cpp:compareByFilePosition, `aOut->sectionIndex` or `bOut->sectionIndex`
2. In OutputSections::finalize, `d->getParent()->sectionIndex`
Simply error and bail out to avoid null pointer dereferences. ld.bfd has
a similar error:
sh_link of section `.bar' points to discarded section `.foo0' of `a.o'
ld.bfd is more permissive in that it just checks whether the linked-to
section of the first input section is discarded. This is likely because
it sets sh_link of the output section according to the first input
section.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D67761
llvm-svn: 372400
The --fix-cortex-a8 option implements a linker workaround for the
coretex-a8 erratum 657417. A summary of the erratum conditions is:
- A 32-bit Thumb-2 branch instruction B.w, Bcc.w, BL, BLX spans two
4KiB regions.
- The destination of the branch is to the first 4KiB region.
- The instruction before the branch is a 32-bit Thumb-2 non-branch
instruction.
The linker fix is to redirect the branch to a patch not in the first
4KiB region. The patch forwards the branch on to its target.
The cortex-a8, is an old CPU, with the first implementation of this
workaround in ld.bfd appearing in 2009. The cortex-a8 has been used in
early Android Phones and there are some critical applications that still
need to run on a cortex-a8 that have the erratum. The patch is applied
roughly 10 times on LLD and 20 on Clang when they are built with
--fix-cortex-a8 on an Arm system.
The formal erratum description is avaliable in the ARM Core Cortex-A8
(AT400/AT401) Errata Notice document. This is available from Arm on
request but it seems to be findable via a web search.
Differential Revision: https://reviews.llvm.org/D67284
llvm-svn: 371965