declare reduction.
If the declare reduction construct with the non-dependent type is
defined in the template construct, the compiler might crash on the
template instantition. Reworked the whole instantiation scheme for the
declare reduction constructs to fix this problem correctly.
llvm-svn: 342151
submodule visibility is disabled.
Attempting to pick a specific declaration to make visible when the
module containing the merged declaration becomes visible is error-prone,
as we don't yet know which declaration we'll choose to be the definition
when we are informed of the merging.
This reinstates r342019, reverted in r342020. The regression previously
observed after this commit was fixed in r342096.
llvm-svn: 342097
submodule visibility is disabled.
Attempting to pick a specific declaration to make visible when the
module containing the merged declaration becomes visible is error-prone,
as we don't yet know which declaration we'll choose to be the definition
when we are informed of the merging.
llvm-svn: 342019
Fix a bug in the deserialization of IMPORTS section and allow for
imported modules to also be printed with -module-file-info.
rdar://problem/43867753
llvm-svn: 341902
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 341754
Specifically, AttributedType now tracks a regular attr::Kind rather than
having its own parallel Kind enumeration, and AttributedTypeLoc now
holds an Attr* instead of holding an ad-hoc collection of Attr fields.
Differential Revision: https://reviews.llvm.org/D50526
This reinstates r339623, reverted in r339638, with a fix to not fail
template instantiation if we instantiate a QualType with no associated
type source information and we encounter an AttributedType.
llvm-svn: 340215
While investigating why LLDB (which can build hundreds of clang
modules during one debug session) was getting "too many open files"
errors, I found that most of them are .pcm files that are kept open by
ModuleManager. Pretty much all of the open file dscriptors are
FileEntries that are refering to `.pcm` files for which a buffer
already exists in a CompilerInstance's PCMCache.
Before PCMCache was added it was necessary to hold on to open file
descriptors to ensure that all ModuleManagers using the same
FileManager read the a consistent version of a given `.pcm` file on
disk, even when a concurrent clang process overwrites the file halfway
through. The PCMCache makes this practice unnecessary, since it caches
the entire contents of a `.pcm` file, while the FileManager caches all
the stat() information.
This patch adds a call to FileEntry::closeFile() to the path where a
Buffer has already been created. This is necessary because even for a
freshly written `.pcm` file the file is stat()ed once immediately
after writing to generate a FileEntry in the FileManager. Because a
freshly-generated file's contents is stored in the PCMCache, it is
fine to close the file immediately thereafter. The second change this
patch makes is to set the `ShouldClose` flag to true when reading a
`.pcm` file into the PCMCache for the first time.
[For reference, in 1 Clang instance there is
- 1 FileManager and
- n ModuleManagers with
- n PCMCaches.]
rdar://problem/40906753
Differential Revision: https://reviews.llvm.org/D50870
llvm-svn: 340188
The compiler may produce unexpected error messages/crashes when declare
target variables were used. Patch fixes problems with the declarations
marked as declare target to or link.
llvm-svn: 339805
This breaks compiling atlwin.h in Chromium. I'm sure the code is invalid
in some way, but we put a lot of work into accepting it, and I'm sure
rejecting it was not an intended consequence of this refactoring. :)
llvm-svn: 339638
Specifically, AttributedType now tracks a regular attr::Kind rather than
having its own parallel Kind enumeration, and AttributedTypeLoc now
holds an Attr* instead of holding an ad-hoc collection of Attr fields.
Differential Revision: https://reviews.llvm.org/D50526
llvm-svn: 339623
Clang generates copy and dispose helper functions for each block literal
on the stack. Often these functions are equivalent for different blocks.
This commit makes changes to merge equivalent copy and dispose helper
functions and reduce code size.
To enable merging equivalent copy/dispose functions, the captured object
infomation is encoded into the helper function name. This allows IRGen
to check whether an equivalent helper function has already been emitted
and reuse the function instead of generating a new helper function
whenever a block is defined. In addition, the helper functions are
marked as linkonce_odr to enable merging helper functions that have the
same name across translation units and marked as unnamed_addr to enable
the linker's deduplication pass to merge functions that have different
names but the same content.
rdar://problem/42640608
Differential Revision: https://reviews.llvm.org/D50152
llvm-svn: 339438
Recommit of r335084 after revert in r335516.
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse order, and therefore printed in the wrong order in
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effect, especially on
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attributes' order was changed instead.
This unfortunately causes some 'previous occurrence here' hints to be
textually after the main marker. This typically happens when attributes
are merged, but are incompatible to each other. Interchanging the role
of the the main and note SourceLocation will also cause the case where
two different declaration's attributes (in contrast to multiple
attributes of the same declaration) are merged to be reverse. There is
no easy fix because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 338800
We can't read a deduced return type until we are sure that the types referred
to by it are not in the middle of being loaded. So defer all reading of such
deduced return types until the end of the recursive deserialization step.
Also, when we load a function type that has a deduced return type, update all
other redeclarations of the function to have that deduced return type.
llvm-svn: 338798
DeclContext has a little less than 8 bytes free due to the alignment
requirements on 64 bits archs. This set of patches moves the
bit-fields from classes deriving from DeclContext into DeclContext.
On 32 bits archs this increases the size of DeclContext by 4 bytes
but this is balanced by an equal or larger reduction in the size
of the classes deriving from it.
On 64 bits archs the size of DeclContext stays the same but
most of the classes deriving from it shrink by 8/16 bytes.
(-print-stats diff here https://reviews.llvm.org/D49728)
When doing an -fsyntax-only on all of Boost this result
in a 3.6% reduction in the size of all Decls and
a 1% reduction in the run time due to the lower cache
miss rate.
For now CXXRecordDecl is not touched but there is
an easy 6 (if I count correctly) bytes gain available there
by moving some bits from DefinitionData into the free
space of DeclContext. This will be the subject of another patch.
This patch sequence also enable the possibility of refactoring
FunctionDecl: To save space some bits from classes deriving from
FunctionDecl were moved to FunctionDecl. This resulted in a
lot of stuff in FunctionDecl which do not belong logically to it.
After this set of patches however it is just a simple matter of
adding a SomethingDeclBitfields in DeclContext and moving the
bits to it from FunctionDecl.
This first patch introduces the anonymous union in DeclContext
and all the *DeclBitfields classes holding the bit-fields, and moves
the bits from TagDecl, EnumDecl and RecordDecl into DeclContext.
This patch is followed by https://reviews.llvm.org/D49732,
https://reviews.llvm.org/D49733 and https://reviews.llvm.org/D49734.
Differential Revision: https://reviews.llvm.org/D49729
Patch By: bricci
llvm-svn: 338630
Summary:
Clang emits error when implicit modules was relocated from the
first build directory. However this was biting our usecase where we copy
the contents of build directory to another directory in order to
distribute.
Differential Revision: https://reviews.llvm.org/D49852
llvm-svn: 338503
parameters can have default arguments.
At least for function templates and class template partial
specializations, it's possible for a template parameter with a default
argument to be followed by a non-pack template parameter with no default
argument, and this case was not properly handled here.
Testcase by Steve O'Brien!
llvm-svn: 338438
Summary:
As discussed in IRC with @rsmith, it is slightly not good to keep that in the `CastExpr` itself:
Given the explicit cast, which is represented in AST as an `ExplicitCastExpr` + `ImplicitCastExpr`'s,
only the `ImplicitCastExpr`'s will be marked as `PartOfExplicitCast`, but not the `ExplicitCastExpr` itself.
Thus, it is only ever `true` for `ImplicitCastExpr`'s, so we don't need to write/read/dump it for `ExplicitCastExpr`'s.
We don't need to worry that we write the `PartOfExplicitCast` in PCH after `CastExpr::path_iterator`,
since the `ExprImplicitCastAbbrev` is only used when the `NumBaseSpecs == 0`, i.e. there is no 'path'.
Reviewers: rsmith, rjmccall, erichkeane, aaron.ballman
Reviewed By: rsmith, erichkeane
Subscribers: vsk, cfe-commits, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D49838
llvm-svn: 338108
Summary:
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=38166 | PR38166 ]], we need to be able to distinqush whether the cast
we are visiting is actually a cast, or part of an `ExplicitCast`.
There are at least four ways to get there:
1. Introduce a new `CastKind`, and use it instead of `IntegralCast` if we are in `ExplicitCast`.
Would work, but does not scale - what if we will need more of these cast kinds?
2. Introduce a flag in `CastExprBits`, whether this cast is part of `ExplicitCast` or not.
Would work, but it isn't immediately clear where it needs to be set.
2. Fix `ScalarExprEmitter::VisitCastExpr()` to visit these `NoOp` casts.
As pointed out by @rsmith, CodeGenFunction::EmitMaterializeTemporaryExpr calls
skipRValueSubobjectAdjustments, which steps over the CK_NoOp cast`,
which explains why we currently don't visit those.
This is probably impossible, as @efriedma points out, that is intentional as per `[class.temporary]` in the standard
3. And the simplest one, just record which NoOp casts we skip.
It just kinda works as-is afterwards.
But, the approach with a flag is the least intrusive one, and is probably the best one overall.
Reviewers: rsmith, rjmccall, majnemer, efriedma
Reviewed By: rsmith
Subscribers: cfe-commits, aaron.ballman, vsk, llvm-commits, rsmith
Differential Revision: https://reviews.llvm.org/D49508
llvm-svn: 337815
Summary:
Reproducer and errors:
https://bugs.llvm.org/show_bug.cgi?id=37878
lookupModule was falling back to loadSubdirectoryModuleMaps when it couldn't
find ModuleName in (proper) search paths. This was causing iteration over all
files in the search path subdirectories for example "/usr/include/foobar" in
bugzilla case.
Users don't expect Clang to load modulemaps in subdirectories implicitly, and
also the disk access is not cheap.
if (AllowExtraModuleMapSearch) true with ObjC with @import ModuleName.
Reviewers: rsmith, aprantl, bruno
Subscribers: cfe-commits, teemperor, v.g.vassilev
Differential Revision: https://reviews.llvm.org/D48367
llvm-svn: 337430
As listed in the above PRs, vector_size doesn't allow
dependent types/values. This patch introduces a new
DependentVectorType to handle a VectorType that has a dependent
size or type.
In the future, ALL the vector-types should be able to create one
of these to handle dependent types/sizes as well. For example,
DependentSizedExtVectorType could likely be switched to just use
this instead, though that is left as an exercise for the future.
Differential Revision: https://reviews.llvm.org/D49045
llvm-svn: 337036
The member init list for the sole constructor for CodeGenFunction
has gotten out of hand, so this patch moves the non-parameter-dependent
initializations into the member value inits.
llvm-svn: 336726
Summary:
Reproducer and errors:
https://bugs.llvm.org/show_bug.cgi?id=37878
lookupModule was falling back to loadSubdirectoryModuleMaps when it couldn't
find ModuleName in (proper) search paths. This was causing iteration over all
files in the search path subdirectories for example "/usr/include/foobar" in
bugzilla case.
Users don't expect Clang to load modulemaps in subdirectories implicitly, and
also the disk access is not cheap.
if (AllowExtraModuleMapSearch) true with ObjC with @import ModuleName.
Reviewers: rsmith, aprantl, bruno
Subscribers: cfe-commits, teemperor, v.g.vassilev
Differential Revision: https://reviews.llvm.org/D48367
llvm-svn: 336660
Functions that are a sub-Decl of a record were hashed differently than other
functions. This change keeps the AddFunctionDecl function and the hash of
records now calls this function. In addition, AddFunctionDecl has an option
to perform a hash as if the body was absent, which is required for some
checks after loading modules. Additional logic prevents multiple error
message from being printed.
llvm-svn: 336632
Summary:
Will be used in clangd, see the follow-up change.
Clangd does not use comments read from PCH to avoid crashes due to
changed contents of the file. However, reading them considerably slows
down code completion on files with large preambles.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: ioeric, cfe-commits
Differential Revision: https://reviews.llvm.org/D48942
llvm-svn: 336539
Implement support for MS-style PCH through headers.
This enables support for /Yc and /Yu where the through header is either
on the command line or included in the source. It replaces the current
support the requires the header also be specified with /FI.
This change adds a -cc1 option -pch-through-header that is used to either
start or stop compilation during PCH create or use.
When creating a PCH, the compilation ends after compilation of the through
header.
When using a PCH, tokens are skipped until after the through header is seen.
Patch By: mikerice
Differential Revision: https://reviews.llvm.org/D46652
llvm-svn: 336379
merged function definitions; also merge functions with deduced return
types.
This seems like two independent fixes, but unfortunately they are hard
to separate because it's challenging to reliably test either one of them
without also testing the other.
A complication arises with deduced return type support: we need the type
of the function in order to know how to merge it, but we can't load the
actual type of the function because it might reference an entity
declared within the function (and we need to have already merged the
function to correctly merge that entity, which we would need to do to
determine if the function types match). So we instead compare the
declared function type when merging functions, and defer loading the
actual type of a function with a deduced type until we've finished
loading and merging the function.
This reverts r336175, reinstating r336021, with one change (for PR38015):
we look at the TypeSourceInfo of the first-so-far declaration of each
function when considering whether to merge two functions. This works
around a problem where the calling convention in the TypeSourceInfo for
subsequent redeclarations may not match if it was implicitly adjusted.
llvm-svn: 336240
This caused test failures in 32-bit builds (PR38015).
> merged function definitions; also merge functions with deduced return
> types.
>
> This seems like two independent fixes, but unfortunately they are hard
> to separate because it's challenging to reliably test either one of them
> without also testing the other.
>
> A complication arises with deduced return type support: we need the type
> of the function in order to know how to merge it, but we can't load the
> actual type of the function because it might reference an entity
> declared within the function (and we need to have already merged the
> function to correctly merge that entity, which we would need to do to
> determine if the function types match). So we instead compare the
> declared function type when merging functions, and defer loading the
> actual type of a function with a deduced type until we've finished
> loading and merging the function.
llvm-svn: 336175
merged function definitions; also merge functions with deduced return
types.
This seems like two independent fixes, but unfortunately they are hard
to separate because it's challenging to reliably test either one of them
without also testing the other.
A complication arises with deduced return type support: we need the type
of the function in order to know how to merge it, but we can't load the
actual type of the function because it might reference an entity
declared within the function (and we need to have already merged the
function to correctly merge that entity, which we would need to do to
determine if the function types match). So we instead compare the
declared function type when merging functions, and defer loading the
actual type of a function with a deduced type until we've finished
loading and merging the function.
llvm-svn: 336021
not the corresponding location information) earlier.
We need the type as written in order to properly merge functions with
deduced return types, so we need to load that early. But we don't want
to load the location information early, because that contains
problematic things such as the function parameters.
llvm-svn: 336016
checks across module boundaries. This was causing us to load constructor
definitions for all consumers of a module with a pending check.
(In one case we saw ~7% of total frontend time spent loading
constructors for this check.)
llvm-svn: 335807
declaration of the function that ends up in the primary definition of
the class.
... at least for class templates. This is necessary for us to be able to
track when an inline friend function has a definition that needs to be
(lazily) instantiated.
llvm-svn: 335805
With MSVC, PCH files are created along with an object file that needs to
be linked into the final library or executable. That object file
contains the code generated when building the headers. In particular, it
will include definitions of inline dllexport functions, and because they
are emitted in this object file, other files using the PCH do not need
to emit them. See the bug for an example.
This patch makes clang-cl match MSVC's behaviour in this regard, causing
significant compile-time savings when building dlls using precompiled
headers.
For example, in a 64-bit optimized shared library build of Chromium with
PCH, it reduces the binary size and compile time of
stroke_opacity_custom.obj from 9315564 bytes to 3659629 bytes and 14.6
to 6.63 s. The wall-clock time of building blink_core.dll goes from
38m41s to 22m33s. ("user" time goes from 1979m to 1142m).
Differential Revision: https://reviews.llvm.org/D48426
llvm-svn: 335466
This diff includes the logic for setting the precision bits for each primary fixed point type in the target info and logic for initializing a fixed point literal.
Fixed point literals are declared using the suffixes
```
hr: short _Fract
uhr: unsigned short _Fract
r: _Fract
ur: unsigned _Fract
lr: long _Fract
ulr: unsigned long _Fract
hk: short _Accum
uhk: unsigned short _Accum
k: _Accum
uk: unsigned _Accum
```
Errors are also thrown for illegal literal values
```
unsigned short _Accum u_short_accum = 256.0uhk; // expected-error{{the integral part of this literal is too large for this unsigned _Accum type}}
```
Differential Revision: https://reviews.llvm.org/D46915
llvm-svn: 335148
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse, and therefore printed in the wrong order by
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effects, especially for
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attribute's order was changed instead.
It also causes some 'previous occurrence here' hints to be textually
after the main marker. This typically happens when attributes are
merged, but are incompatible. Interchanging the role of the the main
and note SourceLocation will also cause the case where two different
declaration's attributes (in contrast to multiple attributes of the
same declaration) are merged to be reversed. There is no easy fix
because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway, which often is on the same line.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 335084