getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
llvm-svn: 166168
All SCEV expressions used by LSR formulae must be safe to
expand. i.e. they may not contain UDiv unless we can prove nonzero
denominator.
Fixes PR11356: LSR hoists UDiv.
llvm-svn: 160205
verifier does. This correctly handles invoke.
Thanks to Duncan, Andrew and Chris for the comments.
Thanks to Joerg for the early testing.
llvm-svn: 151469
know where users will be added. Because of this, it cannot use
Builder.GetInsertPoint at all.
This patch
* removes the FIXME about adding the assert.
* adds a comment explaining hy we don't have one.
* removes a broken logic that only works for some callers and is not needed
since r150884.
* adds an assert to caller that would have caught the bug fixed by r150884.
llvm-svn: 151015
the cast. If we do, we can end up with
inst1
--------------- < Insertion point
dbg inst
new inst
instead of the desired
inst1
new inst
--------------- < Insertion point
dbg inst
Another option would be for InsertNoopCastOfTo (or its callers) to move the
insertion point and we would end up with
inst1
dbg inst
new inst
--------------- < Insertion point
but that complicates the callers. This fixes PR12018 (and firefox's build).
llvm-svn: 150884
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
llvm-svn: 148535
These heuristics are sufficient for enabling IV chains by
default. Performance analysis has been done for i386, x86_64, and
thumbv7. The optimization is rarely important, but can significantly
speed up certain cases by eliminating spill code within the
loop. Unrolled loops are prime candidates for IV chains. In many
cases, the final code could still be improved with more target
specific optimization following LSR. The goal of this feature is for
LSR to make the best choice of induction variables.
Instruction selection may not completely take advantage of this
feature yet. As a result, there could be cases of slight code size
increase.
Code size can be worse on x86 because it doesn't support postincrement
addressing. In fact, when chains are formed, you may see redundant
address plus stride addition in the addressing mode. GenerateIVChains
tries to compensate for the common cases.
On ARM, code size increase can be mitigated by using postincrement
addressing, but downstream codegen currently misses some opportunities.
llvm-svn: 147826
Just because we're dealing with a GEP doesn't mean we can assert the
SCEV has a pointer type. The fix is simply to ignore the SCEV pointer
type, which we really didn't need.
Fixes PR11138 webkit crash.
llvm-svn: 142058
This avoids unnecessary expansion of expressions and allows the SCEV
expander to work on expression DAGs, not just trees.
Fixes PR11090.
llvm-svn: 141870
IVs.
Indvars previously chose randomly between congruent IVs. Now it will
bias the decision toward IVs that SCEVExpander likes to create. This
was not done to fix any problem, it's just a welcome side effect of
factoring code.
llvm-svn: 141633