Commit Graph

146 Commits

Author SHA1 Message Date
Aaron Ballman 0be238cebd Revert r235560; this commit was causing several failed assertions in Debug builds using MSVC's STL. The iterator is being used outside of its valid range.
llvm-svn: 235597
2015-04-23 13:41:59 +00:00
Hans Wennborg 15823d49b6 Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
This is a re-commit of r235101, which also fixes the problems with the previous patch:

- Switches with only a default case and non-fallthrough were handled incorrectly

- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.

> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference.  If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649

llvm-svn: 235560
2015-04-22 23:14:56 +00:00
Hans Wennborg a9e2057416 Revert the switch lowering change (r235101, r235103, r235106)
Looks like it broke the sanitizer-ppc64-linux1 build. Reverting for now.

llvm-svn: 235108
2015-04-16 15:43:26 +00:00
Hans Wennborg d403664ed8 Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.

By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.

This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.

This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.

For example, this will enable us to balance the tree based on profile info
in the future.

The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference.  If this
does turn out to be a problem, we could limit the search space of the algorithm.

This commit also disables all optimizations during switch lowering in -O0.

Differential Revision: http://reviews.llvm.org/D8649

llvm-svn: 235101
2015-04-16 14:49:23 +00:00
Krzysztof Parzyszek a46c36b8f4 Allow memory intrinsics to be tail calls
llvm-svn: 234764
2015-04-13 17:16:45 +00:00
Benjamin Kramer dd0ff85701 Remove empty non-virtual destructors or mark them =default when non-public
These add no value but can make a class non-trivially copyable. NFC.

llvm-svn: 234688
2015-04-11 15:32:26 +00:00
Duncan P. N. Exon Smith 3bef6a3803 CodeGen: Assert that inlined-at locations agree
As a follow-up to r234021, assert that a debug info intrinsic variable's
`MDLocalVariable::getInlinedAt()` always matches the
`MDLocation::getInlinedAt()` of its `!dbg` attachment.

The goal here is to get rid of `MDLocalVariable::getInlinedAt()`
entirely (PR22778), but I'll let these assertions bake for a while
first.

If you have an out-of-tree backend that just broke, you're probably
attaching the wrong `DebugLoc` to a `DBG_VALUE` instruction.  The one
you want is the location that was attached to the corresponding
`@llvm.dbg.declare` or `@llvm.dbg.value` call that you started with.

llvm-svn: 234038
2015-04-03 19:20:26 +00:00
Duncan P. N. Exon Smith 66463cc5dc SelectionDAG: Use specialized metadata nodes in EmitFuncArgumentDbgValue(), NFC
Use `MDLocalVariable` and `MDExpression` directly for the arguments of
`EmitFuncArgumentDbgValue()` to simplify a follow-up patch.

llvm-svn: 234026
2015-04-03 17:11:42 +00:00
Hans Wennborg 077845eb81 Rewrite SelectionDAGBuilder::Clusterify to run in linear time. NFC.
It was previously repeatedly erasing elements from the middle of a vector,
causing O(n^2) worst-case run-time.

llvm-svn: 232789
2015-03-20 00:41:03 +00:00
Hans Wennborg b4db1420c2 Switch lowering: extract NextBlock function. NFC.
llvm-svn: 232759
2015-03-19 20:41:48 +00:00
Hans Wennborg 783254386e Switch lowering: remove unnecessary ConstantInt casts. NFC.
llvm-svn: 232729
2015-03-19 16:42:21 +00:00
Igor Laevsky 85f7f727d3 Teach lowering to correctly handle invoke statepoint and gc results tied to them. Note that we still can not lower gc.relocates for invoke statepoints.
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
(Resubmitting this change after not being able to reproduce buildbot failure)

Differential Revision: http://reviews.llvm.org/D7760

llvm-svn: 231800
2015-03-10 16:26:48 +00:00
Igor Laevsky 8d0851f509 Revert change r231366 as it broke clang-native-arm-cortex-a9 Analysis/properties.m test.
llvm-svn: 231374
2015-03-05 15:41:14 +00:00
Igor Laevsky 1725997f14 Teach lowering to correctly handle invoke statepoint and gc results tied to them. Note that we still can not lower gc.relocates for invoke statepoints.
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.

llvm-svn: 231366
2015-03-05 14:11:21 +00:00
Benjamin Kramer 4e3b903a95 Reduce double set lookups.
llvm-svn: 230798
2015-02-27 21:43:14 +00:00
Igor Laevsky 7fc58a4ad8 Generalize statepoint lowering to use ImmutableStatepoint. Move statepoint lowering into a separate function 'LowerStatepoint' which uses ImmutableStatepoint instead of a CallInst. Also related utility functions are changed to receive ImmutableCallSite.
Differential Revision: http://reviews.llvm.org/D7756 

llvm-svn: 230017
2015-02-20 15:28:35 +00:00
Daniel Jasper d106b734cf Factor out a splitSwitchCase() function so that it can be reused.
This is in preparation for a fix to llvm.org/PR22262. One of the ideas
here is to first find a good jump table range first and then split
before and after it. Thereby, we don't need to use the
split-based-on-density heuristic at all, which can make the "binary
tree" deteriorate in various cases.

Also some minor cleanups.

No functional changes.

llvm-svn: 226551
2015-01-20 08:57:44 +00:00
Chandler Carruth d9903888d9 [cleanup] Re-sort all the #include lines in LLVM using
utils/sort_includes.py.

I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.

llvm-svn: 225974
2015-01-14 11:23:27 +00:00
Reid Kleckner 0a57f65514 CodeGen support for x86_64 SEH catch handlers in LLVM
This adds handling for ExceptionHandling::MSVC, used by the
x86_64-pc-windows-msvc triple. It assumes that filter functions have
already been outlined in either the frontend or the backend. Filter
functions are used in place of the landingpad catch clause type info
operands. In catch clause order, the first filter to return true will
catch the exception.

The C specific handler table expects the landing pad to be split into
one block per handler, but LLVM IR uses a single landing pad for all
possible unwind actions. This patch papers over the mismatch by
synthesizing single instruction BBs for every catch clause to fill in
the EH selector that the landing pad block expects.

Missing functionality:
- Accessing data in the parent frame from outlined filters
- Cleanups (from __finally) are unsupported, as they will require
  outlining and parent frame access
- Filter clauses are unsupported, as there's no clear analogue in SEH

In other words, this is the minimal set of changes needed to write IR to
catch arbitrary exceptions and resume normal execution.

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6300

llvm-svn: 225904
2015-01-14 01:05:27 +00:00
Hal Finkel 0ad96c818c [StackMaps] Mark in CallLoweringInfo when lowering a patchpoint
While, generally speaking, the process of lowering arguments for a patchpoint
is the same as lowering a regular indirect call, on some targets it may not be
exactly the same. Targets may not, for example, want to add additional register
dependencies that apply only to making cross-DSO calls through linker stubs,
may not want to load additional registers out of function descriptors, and may
not want to add additional side-effect-causing instructions that cannot be
removed later with the call itself being generated.

The PowerPC target will use this in a future commit (for all of the reasons
stated above).

llvm-svn: 225806
2015-01-13 17:48:04 +00:00
Elena Demikhovsky f1de34b84d Masked Load / Store Intrinsics - the CodeGen part.
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.

Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 223348
2014-12-04 09:40:44 +00:00
Philip Reames 1a1bdb22bf [Statepoints 3/4] Statepoint infrastructure for garbage collection: SelectionDAGBuilder
This is the third patch in a small series.  It contains the CodeGen support for lowering the gc.statepoint intrinsic sequences (223078) to the STATEPOINT pseudo machine instruction (223085).  The change also includes the set of helper routines and classes for working with gc.statepoints, gc.relocates, and gc.results since the lowering code uses them.  

With this change, gc.statepoints should be functionally complete.  The documentation will follow in the fourth change, and there will likely be some cleanup changes, but interested parties can start experimenting now.

I'm not particularly happy with the amount of code or complexity involved with the lowering step, but at least it's fairly well isolated.  The statepoint lowering code is split into it's own files and anyone not working on the statepoint support itself should be able to ignore it.  

During the lowering process, we currently spill aggressively to stack. This is not entirely ideal (and we have plans to do better), but it's functional, relatively straight forward, and matches closely the implementations of the patchpoint intrinsics.  Most of the complexity comes from trying to keep relocated copies of values in the same stack slots across statepoints.  Doing so avoids the insertion of pointless load and store instructions to reshuffle the stack.  The current implementation isn't as effective as I'd like, but it is functional and 'good enough' for many common use cases.  

In the long term, I'd like to figure out how to integrate the statepoint lowering with the register allocator.  In principal, we shouldn't need to eagerly spill at all.  The register allocator should do any spilling required and the statepoint should simply record that fact.  Depending on how challenging that turns out to be, we may invest in a smarter global stack slot assignment mechanism as a stop gap measure.  

Reviewed by: atrick, ributzka

llvm-svn: 223137
2014-12-02 18:50:36 +00:00
Akira Hatanaka b9991a2656 [stack protector] Set edge weights for newly created basic blocks.
This commit fixes a bug in stack protector pass where edge weights were not set
when new basic blocks were added to lists of successor basic blocks.

Differential Revision: http://reviews.llvm.org/D5766

llvm-svn: 222987
2014-12-01 04:27:03 +00:00
Duncan P. N. Exon Smith 9bc81fbe92 Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

llvm-svn: 222936
2014-11-28 21:29:14 +00:00
Elena Demikhovsky 9e5089a938 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 222632
2014-11-23 08:07:43 +00:00
Matt Arsenault 7c93690be0 Add minnum / maxnum codegen
llvm-svn: 220342
2014-10-21 23:01:01 +00:00
Juergen Ributzka ad2363f9ee [Stackmaps] Enable invoking the patchpoint intrinsic.
Patch by Kevin Modzelewski
Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits, reames

Differential Revision: http://reviews.llvm.org/D5634

llvm-svn: 220055
2014-10-17 17:39:00 +00:00
Juergen Ributzka fd4633e1a5 Reduce code duplication between patchpoint and non-patchpoint lowering. NFC.
This is in preparation for another patch that makes patchpoints invokable.

Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5657

llvm-svn: 219967
2014-10-16 21:26:35 +00:00
Chad Rosier df82a33d42 Refactor debug statement and remove dead argument. NFC.
llvm-svn: 219626
2014-10-13 19:46:39 +00:00
Benjamin Kramer c6cc58e703 Remove unnecessary copying or replace it with moves in a bunch of places.
NFC.

llvm-svn: 219061
2014-10-04 16:55:56 +00:00
Adrian Prantl 87b7eb9d0f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl b458dc2eee Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl 25a7174e7a Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Benjamin Kramer a7c40ef022 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

llvm-svn: 215558
2014-08-13 16:26:38 +00:00
Akira Hatanaka e5b6e0d231 [stack protector] Fix a potential security bug in stack protector where the
address of the stack guard was being spilled to the stack.

Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register. 

<rdar://problem/12475629>

llvm-svn: 213967
2014-07-25 19:31:34 +00:00
Alp Toker cf21875d41 Fix 'platform-specific' hyphenations
llvm-svn: 212056
2014-06-30 18:57:16 +00:00
Adrian Prantl 32da88923a This reapplies r207235 with an additional bugfixes caught by the msan
buildbot - do not insert debug intrinsics before phi nodes.

Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.

Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.

This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source

rdar://problem/16679879
http://reviews.llvm.org/D3374

llvm-svn: 207269
2014-04-25 20:49:25 +00:00
Adrian Prantl d2d9b76e48 Revert "This reapplies r207130 with an additional testcase+and a missing check for"
This reverts commit 207235 to investigate msan buildbot breakage.

llvm-svn: 207250
2014-04-25 18:18:09 +00:00
Adrian Prantl f5834a4b49 This reapplies r207130 with an additional testcase+and a missing check for
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.

Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.

This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source

rdar://problem/16679879
http://reviews.llvm.org/D3374

llvm-svn: 207235
2014-04-25 17:01:00 +00:00
Adrian Prantl 6e5de2ea06 Revert "This reapplies r207130 with an additional testcase+and a missing check for"
Typo in testcase.

llvm-svn: 207166
2014-04-25 00:42:50 +00:00
Adrian Prantl 3512190ab3 This reapplies r207130 with an additional testcase+and a missing check for
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.

Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.

This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source

rdar://problem/16679879
http://reviews.llvm.org/D3374

llvm-svn: 207165
2014-04-25 00:38:40 +00:00
Yaron Keren d7ba46b287 Patch by Vadim Chugunov
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by 
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.

A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.

llvm-svn: 206684
2014-04-19 13:47:43 +00:00
Craig Topper ada0857679 [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
llvm-svn: 206356
2014-04-16 04:21:27 +00:00
Patrik Hagglund 1da3512166 Replace '#include ValueTypes.h' with forward declarations.
In some cases the include is pushed "downstream" (or removed if
unused).

llvm-svn: 203644
2014-03-12 08:00:24 +00:00
Chandler Carruth 219b89b987 [Modules] Move CallSite into the IR library where it belogs. It is
abstracting between a CallInst and an InvokeInst, both of which are IR
concepts.

llvm-svn: 202816
2014-03-04 11:01:28 +00:00
Rafael Espindola 5f57f462a8 Rename a few more DataLayout variables from TD to DL.
llvm-svn: 201870
2014-02-21 18:34:28 +00:00
Manman Ren 4ece7452ba PGO branch weight: update edge weights in SelectionDAGBuilder.
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.

The previous attempt at r200431 was reverted at r200434 because of
two testing case failures. I modified my patch a little, but forgot
to re-run "make check-all".

Testing case CodeGen/ARM/lsr-unfolded-offset.ll is updated because of
the patch's impact on branch probability which causes changes in
spill placement.

llvm-svn: 200502
2014-01-31 00:42:44 +00:00
Manman Ren 7407e0e31c Revert r200431 due to bot failures.
llvm-svn: 200434
2014-01-30 00:53:27 +00:00
Manman Ren 104e0c80cc PGO branch weight: update edge weights in SelectionDAGBuilder.
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.

llvm-svn: 200431
2014-01-30 00:24:37 +00:00
Nico Rieck b5262d6d8f Fix non-deterministic SDNodeOrder-dependent codegen
Reset SelectionDAGBuilder's SDNodeOrder to ensure deterministic code
generation.

llvm-svn: 199050
2014-01-12 14:09:17 +00:00