This enables a few requested improvements on the original review of this
script at https://reviews.llvm.org/D46192.
This introduces 2 new command line options:
* --email-report: This option enables specifying who to email the generated
report to. This also enables not sending any email and only printing out
the report on stdout by not specifying this option on the command line.
* --sender: this allows specifying the email address that will be used in
the "From" email header.
I believe that with these options the script starts having the basic
features needed to run it well on a regular basis for a group of
developers.
Differential Revision: https://reviews.llvm.org/D47930
llvm-svn: 335948
Reverting because this is causing failures in the LLDB test suite on
GreenDragon.
LLVM ERROR: unsupported relocation with subtraction expression, symbol
'__GLOBAL_OFFSET_TABLE_' can not be undefined in a subtraction
expression
llvm-svn: 335894
Optional<T> was broken due to a change in the class's internals.
That is fixed, and additionally a visualizer is added for
Expected<T>.
llvm-svn: 335892
Prior to this change, there was no clean way of getting FileCheck to
check that a line is completely empty. The expected way of using
"CHECK: {{^$}}" does not work because the '^' matches the end of the
previous match (this behaviour may be desirable in certain instances).
For the same reason, "CHECK-NEXT: {{^$}}" will fail when the previous
match was at the end of the line, as the pattern will match there.
Using the recommended [[:space:]] to match an explicit new line could
also match a space, and thus is not always desired. Literal '\n'
matches also do not work. A workaround was suggested in the review, but
it is a little clunky.
This change adds a new directive that behaves the same as CHECK-NEXT,
except that it only matches against empty lines (nothing, not even
whitespace, is allowed). As with CHECK-NEXT, it will fail if more than
one newline occurs before the next blank line. Example usage:
; test.txt
foo
bar
; CHECK: foo
; CHECK-EMPTY:
; CHECK-NEXT: bar
Differential Revision: https://reviews.llvm.org/D28896
Reviewed by: probinson
llvm-svn: 335613
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
I restricted the MCJIT/eh-lg-pic.ll test to Linux, since the large PIC
code model is not implemented for MachO yet.
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335508
Implements PR34259
Intrinsics.h is a very popular header. Most LLVM TUs care about things
like dbg_value, but they don't care how they are implemented. After I
split these out, IntrinsicImpl.inc is 1.7 MB, so this saves each LLVM TU
from scanning 1.7 MB of source that gets pre-processed away.
It also means we can modify intrinsic properties without triggering a
full rebuild, but that's probably less of a win.
I think the next best thing to do would be to split out the target
intrinsics into their own header. Very, very few TUs care about
target-specific intrinsics. It's very hard to split up the target
independent intrinsics like llvm.expect, assume, and dbg.value, though.
llvm-svn: 335407
Summary:
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
Reviewers: chandlerc, echristo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335297
Summary:
This is essentially a rewrite of the backend which introduces TableGen
base classes GenericEnum, GenericTable, and SearchIndex. They allow
generating custom enums and tables with lookup functions using
separately defined records as the underlying database.
Also added as part of this change:
- Lookup functions may use indices composed of multiple fields.
- Instruction fields are supported similar to Intrinsic fields.
- When the lookup key has contiguous numeric values, the lookup
function will directly index into the table instead of using a binary
search.
The existing SearchableTable functionality is internally mapped to the
new primitives.
Change-Id: I444f3490fa1dbfb262d7286a1660a2c4308e9932
Reviewers: arsenm, tra, t.p.northover
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D48013
llvm-svn: 335225
This adds an EVEX2VEXOverride string to the X86 instruction class in X86InstrFormats.td. If this field is set it will add manual entry in the EVEX->VEX tables that doesn't check the encoding information.
Then use this mechanism to map VMOVDU/A8/16, 128-bit VALIGN, and VPSHUFF/I instructions to VEX instructions.
Finally, remove the manual table from the emitter.
This has the bonus of fully sorting the autogenerated EVEX->VEX tables by their EVEX instruction enum value. We may be able to use this to do a binary search for the conversion and get rid of the need to create a DenseMap.
llvm-svn: 335018
EVEX makes heavy use of the VEX.W bit to indicate 64-bit element vs 32-bit elements. Many of the VEX instructions were split into 2 versions with different masking granularity.
The EVEX->VEX table generate can collapse the two versions if the VEX version uses is tagged as VEX_WIG. But if the VEX version is instead marked VEX.W==0 we can't combine them because we don't know if there is also a VEX version with VEX.W==1.
This patch adds a new VEX_W1X tag that indicates the EVEX instruction encodes with VEX.W==1, but is safe to convert to a VEX instruction with VEX.W==0.
This allows us to remove a bunch of manual EVEX->VEX table entries. We may want to look into splitting up the VEX_WPrefix field which would simplify the disassembler.
llvm-svn: 335017
Rather than having an exclusion list in tablegen sources, add a flag to the X86 instruction records that can be used to suppress checking for convertibility.
llvm-svn: 334971
Allow a tied operand of a different operand class in InstAliases,
so that the operand can be printed (and added to the MC instruction)
as the appropriate register. For example, 'GPR64as32', which would
be printed/parsed as a 32bit register and should match a tied 64bit
register operand, where the former is a sub-register of the latter.
This patch also generalizes the constraint checking to an overrideable
method in MCTargetAsmParser, so that target asmparsers can specify
whether a given operand satisfies the tied register constraint.
Reviewers: olista01, rengolin, fhahn, SjoerdMeijer, samparker, dsanders, craig.topper
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47714
llvm-svn: 334942
Unlike CodeGenInstruction, CodeGenInstAlias was flatting asm strings in its constructor. For instructions it was the users responsibility to flatten the string.
AsmMatcherEmitter didn't know this and treated them the same. This caused double flattening of InstAliases. This is mostly harmless unless the desired assembly string contains curly braces. The second flattening wouldn't know to ignore these and would remove the curly braces. And for variant 1 it would remove the contents of them as well.
To mitigate this, this patch makes removes the flattening from the CodeGenIntAlias constructor and modifies AsmWriterEmitter to account for the flattening not having been done.
llvm-svn: 334919
So far, we've only handled special cases of PatFrag like ImmLeaf. This patch
adds support for the remaining cases using similar mechanisms.
Like most C++ code from SelectionDAG, GISel and DAGISel expect to operate on
different types and representations and as such the code is not compatible
between the two. It's therefore necessary to add an alternative implementation
in the GISelPredicateCode field.
The target test for this feature could easily be done with IntImmLeaf and this
would save on a little boilerplate. The reason I've chosen to implement this
using PatFrag.GISelPredicateCode and not IntImmLeaf is because I was unable to
find a rule that was blocked solely by lack of support for PatFrag predicates. I
found that the ones I investigated as being likely candidates for the test
were further blocked by other things.
llvm-svn: 334871
The return value of TreePatternNode::getChild is never null. This patch also
updates various places that use return values of getChild to also use
references. Those changes were suggested post-commit for D47463.
llvm-svn: 334764
Summary:
For targets I'm not familiar with, I've automatically made the "default to 1 for each resource" behaviour explicit in the td files.
For more obvious cases, I've ventured a fix.
Some notes:
- Exynos is especially fishy.
- AArch64SchedThunderX2T99.td had some truncated entries. If I understand correctly, the person who wrote that interpreted the ResourceCycle as a range. I made the decision to use the upper/lower bound for consistency with the 'Latency' value. I'm sure there is a better choice.
- The change to X86ScheduleBtVer2.td is an NFC, it just makes values more explicit.
Also see PR37310.
Reviewers: RKSimon, craig.topper, javed.absar
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D46356
llvm-svn: 334586
Summary:
This script allows you to use git to backport a commit to a stable
branch while generating the exact same commit message (ignoring
whitespace) that you would get from using the merge.sh script with svn.
Reviewers: hansw
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47760
llvm-svn: 334568
Previously we were whitelisting in instructions based on their SchedRW value. With the masked store instructions explicitly removed via NotMemoryFoldable, we don't seem to need this check anymore.
llvm-svn: 334563
This simplifies some code which had StringRefs to begin with, and
makes other code more complicated which had const char* to begin
with.
In the end, I think this makes for a more idiomatic and platform
agnostic API. Not all platforms launch process with null terminated
c-string arrays for the environment pointer and argv, but the api
was designed that way because it allowed easy pass-through for
posix-based platforms. There's a little additional overhead now
since on posix based platforms we'll be takign StringRefs which
were constructed from null terminated strings and then copying
them to null terminate them again, but from a readability and
usability standpoint of the API user, I think this API signature
is strictly better.
llvm-svn: 334518
The RMW instructions are detected by reading the SchedRW data, but the RMW instructions have had their SchedRW changed in recent months. This broke the expectation.
We probably should fix this to use the mayLoad/mayStore flags if possible.
llvm-svn: 334478
Summary:
Lack of that support has taken me by surprise.
I need to add (or at least look at) some tests for https://reviews.llvm.org/D47980#1127615,
and i don't really fancy doing that by hand.
The asm pattern is quite similar to that of x86:
https://godbolt.org/g/hfgeds
just with `#` replaced with `;`
Reviewers: spatel, RKSimon, MaskRay, tstellar, arsenm
Reviewed By: arsenm
Subscribers: arsenm, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, rampitec, bogner, mareko, llvm-commits
Tags: #amdgpu
Differential Revision: https://reviews.llvm.org/D48001
llvm-svn: 334396
The index size is represented by the letter after the 'v'. The number represents the memory size. If an 'x' appears after the number its means the index register can be from VR128X/VR256X instead of VR128/VR256.
As vy512mem uses a VR256X index it should have an x.
And vz256mem uses a VR512 index so it shouldn't have an x.
I admit these names kind of suck and are confusing.
llvm-svn: 334120
The test was failing on Windows machines which had bash.exe on PATH (but
not in the so called lit tools dir, containing cmp.exe, grep.exe etc.).
The problem was that the outer lit invocation would load LLVMConfig
from utils/lit/lit/llvm/config.py, which looks up the tools path with
getToolsPath(). That has a surprising side effect of also setting
bashPath, in our case setting it to empty.
The outer lit invocation would thus configure the pdbg0 and pdbg1
substitutions based on not running with bash.
But the inner lit invocation would not load LLVMConfig, so bash
would be found on PATH, that would be used as external shell,
and so the output wouldn't match pdbg0 and pdbg1.
It seems weird to me that getBashPath() will return different results
depending on whether getToolsPath() has been called before, but I
also don't know how to fix it properly.
This commit just relaxes the test case, because there doesn't seem
to be much point in testing for the exact syntax of the run file
as long as it works.
(See https://crbug.com/850023)
llvm-svn: 334100
Summary:
The '%analyze' extra_args config argument seems to have been erroneously
deleted in r315627 disabling Z3 tests for the clang analyzer. Add the
flag back.
Reviewers: george.karpenkov, NoQ, ddcc
Reviewed By: george.karpenkov
Subscribers: xazax.hun, szepet, delcypher, a.sidorin, llvm-commits
Differential Revision: https://reviews.llvm.org/D47722
llvm-svn: 334066