Commit Graph

233 Commits

Author SHA1 Message Date
Arthur Eubanks e5766f25c6 Use uint64_t for branch weights instead of uint32_t
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.

Reviewed By: davidxl

Differential Revision: https://reviews.llvm.org/D88609
2020-10-26 20:24:04 -07:00
Shimin Cui 95bda510fb [ConstantFold] Fold the comparison of bitcasted global values
This is to simplify icmp instructions in the form like:

%cmp = icmp eq i32 (i8*, i8*)* bitcast (i32 (i32**, i32**)* @f32 to i32
%(i8*, i8*)), bitcast (i32 (i64**, i64**) @f64 to i32 (i8*, i8*)*)

Here @f32 and @f64 are two functions.

Differential Revision: https://reviews.llvm.org/D87850
2020-10-20 12:41:49 -07:00
Eli Friedman 278299b0f0 [SCCP] Reduce the number of times ResolvedUndefsIn is called for large modules.
If a module has many values that need to be resolved by
ResolvedUndefsIn, compilation takes quadratic time overall. Solve should
do a small amount of work, since not much is added to the worklists each
time markOverdefined is called. But ResolvedUndefsIn is linear over the
length of the function/module, so resolving one undef at a time is
quadratic in general.

To solve this, make ResolvedUndefsIn resolve every undef value at once,
instead of resolving them one at a time. This loses a little
optimization power, but can be a lot faster.

We still need a loop around ResolvedUndefsIn because markOverdefined
could change the set of blocks that are live. That should be uncommon,
hopefully. We could optimize it by tracking which blocks transition from
dead to live, instead of iterating over the whole module to find them.
But I'll leave that for later. (The whole function will become a lot
simpler once we start pruning branches on undef.)

The regression test changes seem minor. The specific cases in question
could probably be optimized with a bit more work, but they seem like
edge cases that don't really matter.

Fixes an "infinite" compile issue my team found on an internal workoad.

Differential Revision: https://reviews.llvm.org/D89080
2020-10-09 15:24:16 -07:00
Florian Hahn b76df593eb Revert "Recommit "[SCCP] Do not replace deref'able ptr with un-deref'able one.""
Looks like there is still another remaining issue:

http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap-msan/builds/22273/steps/build%20libcxx%2Fmsan/logs/stdio

This reverts commit 86a20d9e34.
2020-09-29 09:18:19 +01:00
Florian Hahn 86a20d9e34 Recommit "[SCCP] Do not replace deref'able ptr with un-deref'able one."
This version includes an small fix allowing function pointers to be
unconditionally replaced for now.

This reverts commit 4c5e4aa89b.
2020-09-29 09:10:27 +01:00
Arthur Eubanks 61ac58e10a [NewPM] Pin tests with -debug-pass to legacy PM
-debug-pass is a legacy PM only option.

Some tests checks that the pass returned that it made a change,
which is not relevant to the NPM, since passes return PreservedAnalyses.

Some tests check that passes are freed at the proper time, which is also
not relevant to the NPM.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D87945
2020-09-22 17:54:25 -07:00
Nikita Popov 9fb46a452d [SCCP] Compute ranges for supported intrinsics
For intrinsics supported by ConstantRange, compute the result range
based on the argument ranges. We do this independently of whether
some or all of the input ranges are full, as we can often still
constrain the result in some way.

Differential Revision: https://reviews.llvm.org/D87183
2020-09-07 22:16:06 +02:00
Nikita Popov 39caf9e940 [SCCP] Add tests for intrinsic ranges (NFC) 2020-09-05 10:28:13 +02:00
Florian Hahn 4c5e4aa89b Revert "[SCCP] Do not replace deref'able ptr with un-deref'able one."
This reverts commit 3542feeb20.

This seems to be causing issues with a sanitizer build
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap-msan/builds/21677
2020-09-03 10:28:42 +01:00
Florian Hahn 3542feeb20 [SCCP] Do not replace deref'able ptr with un-deref'able one.
Currently IPSCCP (and others like CVP/GVN) blindly propagate pointer
equalities. In certain cases, that leads to dereferenceable pointers
being replaced, as in the example test case.

I think this is not allowed, as it introduces an access of an
un-dereferenceable pointer. Note that the pointer is inbounds, but one
past the last element, so it is valid, but not dereferenceable.

This patch is mostly to highlight the issue and start a discussion.
Currently it only checks for specifically looking
one-past-the-last-element pointers with array typed bases.

This causes the mis-compile outlined in
https://stackoverflow.com/questions/55754313/is-this-gcc-clang-past-one-pointer-comparison-behavior-conforming-or-non-standar

In the test case, if we replace %p with the GEP for the store, we
subsequently determine that the store and the load cannot alias, because
they are to different underlying objects.

Note that Alive2 seems to think that the replacement is valid:
https://alive2.llvm.org/ce/z/2rorhk

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D85332
2020-09-03 10:22:21 +01:00
Florian Hahn ce654f4be0 [SCCP] Add test where dereferenceable ptr is replaced with un-dereferenceable one 2020-09-03 10:06:51 +01:00
Congzhe Cao ec489ae048 [IPSCCP] Fix a bug that the "returned" attribute is not cleared when function is optimized to return undef
In IPSCCP when a function is optimized to return undef, it should clear the returned attribute for all its input arguments
and its corresponding call sites.

The bug is exposed when the value of an input argument of the function is assigned to a physical register and
because of the argument having a returned attribute, the value of this physical register will continue to be used
as the function return value right after the call instruction returns, even if the value that this register holds may
be clobbered during the function call. This potentially results in incorrect values being used afterwards.

Reviewed By: jdoerfert, fhahn

Differential Revision: https://reviews.llvm.org/D84220
2020-09-02 11:21:48 -04:00
Nikita Popov 4564974504 [SCCP] Propagate inequalities
Teach SCCP to create notconstant lattice values from inequality
assumes and nonnull metadata, and update getConstant() to make
use of them. Additionally isOverdefined() needs to be changed to
consider notconstant an overdefined value.

Handling inequality branches is delayed until our branch on undef
story in other passes has been improved.

Differential Revision: https://reviews.llvm.org/D83643
2020-08-04 20:20:52 +02:00
Florian Hahn 599955eb56 Recommit "[IPConstProp] Remove and move tests to SCCP."
This reverts commit 59d6e814ce.

The cause for the revert (3 clang tests running opt -ipconstprop) was
fixed by removing those lines.
2020-08-02 22:23:54 +01:00
Arthur Eubanks b36c39260e [NewPM] Don't print 'Invalidating all non-preserved analyses'
If an analysis is actually invalidated, there's already a log statement
for that: 'Invalidating analysis: FooAnalysis'.
Otherwise the statement is not very useful.

Reviewed By: asbirlea, ychen

Differential Revision: https://reviews.llvm.org/D84981
2020-07-30 19:40:29 -07:00
Nikita Popov 4c16eafe12 [SCCP] Remove dead switch cases based on range information
Determine whether switch edges are feasible based on range information,
and remove non-feasible edges lateron.

This does not try to determine whether the default edge is dead,
as we'd have to determine that the range is fully covered by the
cases for that.

Another limitation here is that we don't remove dead cases that
have the same successor as a live case. I'm not handling this
because I wanted to keep the edge removal based on feasible edges
only, rather than inspecting ranges again there -- this does not
seem like a particularly useful case to handle.

Differential Revision: https://reviews.llvm.org/D84270
2020-07-30 21:21:08 +02:00
Yuanfang Chen 555cf42f38 [NewPM][PassInstrument] Add PrintPass callback to StandardInstrumentations
Problem:
Right now, our "Running pass" is not accurate when passes are wrapped in adaptor because adaptor is never skipped and a pass could be skipped. The other problem is that "Running pass" for a adaptor is before any "Running pass" of passes/analyses it depends on. (for example, FunctionToLoopPassAdaptor). So the order of printing is not the actual order.

Solution:
Doing things like PassManager::Debuglogging is very intrusive because we need to specify Debuglogging whenever adaptor is created. (Actually, right now we're not specifying Debuglogging for some sub-PassManagers. Check PassBuilder)

This patch move debug logging for pass as a PassInstrument callback. We could be sure that all running passes are logged and in the correct order.

This could also be used to implement hierarchy pass logging in legacy PM. We could also move logging of pass manager to this if we want.

The test fixes looks messy. It includes changes:
- Remove PassInstrumentationAnalysis
- Remove PassAdaptor
- If a PassAdaptor is for a real pass, the pass is added
- Pass reorder (to the correct order), related to PassAdaptor
- Add missing passes (due to Debuglogging not passed down)

Reviewed By: asbirlea, aeubanks

Differential Revision: https://reviews.llvm.org/D84774
2020-07-30 10:07:57 -07:00
Florian Hahn 59d6e814ce Revert "[IPConstProp] Remove and move tests to SCCP."
This reverts commit e77624a3be.

Looks like some clang tests manually invoke -ipconstprop via opt.....
2020-07-30 13:06:54 +01:00
Florian Hahn e77624a3be [IPConstProp] Remove and move tests to SCCP.
As far as I know, ipconstprop has not been used in years and ipsccp has
been used instead. This has the potential for confusion and sometimes
leads people to spend time finding & reporting bugs as well as
updating it to work with the latest API changes.

This patch moves the tests over to SCCP. There's one functional difference
I am aware of: ipconstprop propagates for each call-site individually, so
for functions that are called with different constant arguments it can sometimes
produce better results than ipsccp (at much higher compile-time cost).But
IPSCCP can be thought to do so as well for internal functions and as mentioned
earlier, the pass seems unused in practice (and there are no plans on working
towards enabling it anytime).

Also discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-July/143773.html

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D84447
2020-07-30 12:36:27 +01:00
Jinsong Ji d28f86723f Re-land "[PowerPC] Remove QPX/A2Q BGQ/BGP CNK support"
This reverts commit bf544fa1c3.

Fixed the typo in PPCInstrInfo.cpp.
2020-07-28 14:00:11 +00:00
Jinsong Ji bf544fa1c3 Revert "[PowerPC] Remove QPX/A2Q BGQ/BGP CNK support"
This reverts commit adffce7153.

This is breaking test-suite, revert while investigation.
2020-07-27 21:07:00 +00:00
Jinsong Ji adffce7153 [PowerPC] Remove QPX/A2Q BGQ/BGP CNK support
Per RFC http://lists.llvm.org/pipermail/llvm-dev/2020-April/141295.html
no one is making use of QPX/A2Q/BGQ/BGP CNK anymore.

This patch remove the support of QPX/A2Q in llvm, BGQ/BGP in clang,
CNK support in openmp/polly.

Reviewed By: hfinkel

Differential Revision: https://reviews.llvm.org/D83915
2020-07-27 19:24:39 +00:00
Nikita Popov f4199b8f0b [SCCP] Add assume non null test (NFC) 2020-07-25 16:02:15 +02:00
Nikita Popov ad16e71c95 Reapply [SCCP] Directly remove non-feasible edges
Reapply with DTU update moved after CFG update, which is a
requirement of the API.

-----

Non-feasible control-flow edges are currently removed by replacing
the branch condition with a constant and then calling
ConstantFoldTerminator. This happens in a rather roundabout manner,
by inspecting the users (effectively: predecessors) of unreachable
blocks, and further complicated by the need to explicitly materialize
the condition for "forced" edges. I would like to extend SCCP to
discard switch conditions that are non-feasible based on range
information, but this is incompatible with the current approach
(as there is no single constant we could use.)

Instead, this patch explicitly removes non-feasible edges. It
currently only needs to handle the case where there is a single
feasible edge. The llvm_unreachable() branch will need to be
implemented for the aforementioned switch improvement.

Differential Revision: https://reviews.llvm.org/D84264
2020-07-25 14:52:35 +02:00
Florian Hahn 3c1476d26c [IPSCCP] Drop argmemonly after replacing pointer argument.
This patch updates IPSCCP to drop argmemonly and
inaccessiblemem_or_argmemonly if it replaces a pointer argument.

Fixes PR46717.

Reviewers: efriedma, davide, nikic, jdoerfert

Reviewed By: efriedma, jdoerfert

Differential Revision: https://reviews.llvm.org/D84432
2020-07-25 11:52:14 +01:00
Florian Hahn 2c1799f892 [IPSCCP] Add another test case with argmemonly callsite attributes. 2020-07-24 10:13:51 +01:00
Fangrui Song 4637daa990 Revert D84264 "[SCCP] Directly remove non-feasible edges" & 5db5b4bc43
It breaks stage-2 build. Clang crashed when compiling
llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp

llvm/Support/GenericDomTree.h eraseNode: Node is not a leaf node
2020-07-23 17:51:48 -07:00
Nikita Popov 183342c0a9 [SCCP] Add another switch+phi test (NFC) 2020-07-23 21:51:09 +02:00
Nikita Popov 9394c3ec88 [SCCP] Directly remove non-feasible edges
Non-feasible control-flow edges are currently removed by replacing
the branch condition with a constant and then calling
ConstantFoldTerminator. This happens in a rather roundabout manner,
by inspecting the users (effectively: predecessors) of unreachable
blocks, and further complicated by the need to explicitly materialize
the condition for "forced" edges. I would like to extend SCCP to
discard switch conditions that are non-feasible based on range
information, but this is incompatible with the current approach
(as there is no single constant we could use.)

Instead, this patch explicitly removes non-feasible edges. It
currently only needs to handle the case where there is a single
feasible edge. The llvm_unreachable() branch will need to be
implemented for the aforementioned switch improvement.

Differential Revision: https://reviews.llvm.org/D84264
2020-07-23 20:32:57 +02:00
Nikita Popov def48b0e88 [PredicateInfo][SCCP] Remove assertion (PR46814)
As long as RenamedOp is not guaranteed to be accurate, we cannot
assert here and should just return false. This was already done
for the other conditions in this function.

Fixes https://bugs.llvm.org/show_bug.cgi?id=46814.
2020-07-23 19:36:51 +02:00
Florian Hahn 0f80d598b0 [IPSCCP] Add test case for PR46717 for argmemonly handling. 2020-07-23 17:25:26 +01:00
Nikita Popov e20b3079c1 [SCCP] Add additional multi-edge + phi tests (NFC) 2020-07-22 22:10:23 +02:00
Nikita Popov 33f6542014 [SCCP] Regenerate test checks (NFC)
And adjust the indbrtest4 test to actually test what it's supposed
to. BB1 is supposed to be eliminated here, but isn't, because
BB0 still branches to it. This was lost due to the incomplete CHECK
lines.
2020-07-22 22:10:23 +02:00
Nikita Popov eae6bb3807 [SCCP] Add multi-edge switch + phi test case (NFC) 2020-07-22 20:28:22 +02:00
Nikita Popov ef868a848e [SCCP] Add switch+range tests (NFC) 2020-07-21 23:07:50 +02:00
Florian Hahn 752fea7c27 [SCCP] Add range metadata to call sites with known return ranges.
If we inferred a range for the function return value, we can add !range
at all call-sites of the function, if the range does not include undef.

Reviewers: efriedma, davide, nikic

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D83952
2020-07-21 10:06:54 +01:00
Nikita Popov c6e13667e7 [PredicateInfo] Add a method to interpret predicate as cmp constraint
Both users of predicteinfo (NewGVN and SCCP) are interested in
getting a cmp constraint on the predicated value. They currently
implement separate logic for this. This patch adds a common method
for this in PredicateBase.

This enables a missing bit of PredicateInfo handling in SCCP: Now
the predicate on the condition itself is also used. For switches
it means we know that the switched-on value is the same as the case
value. For assumes/branches we know that the condition is true or
false.

Differential Revision: https://reviews.llvm.org/D83640
2020-07-19 15:34:32 +02:00
Florian Hahn 037c812191 [SCCP] Add test cases for adding !range to call-sites. 2020-07-16 15:34:58 +01:00
Nikita Popov d589372704 [SCCP] Extend nonnull metadata test (NFC) 2020-07-12 17:48:32 +02:00
Nikita Popov 6634aef71f [SCCP] Add test for predicate info condition handling (NFC) 2020-07-12 10:13:10 +02:00
Florian Hahn 9477d39e61 [SCCP] Move tests using only ipsccp from IPConstantProp to SCCP (NFC).
Some of the tests in the llvm/test/Transforms/IPConstantProp directory
actually only use -ipsccp. Those tests belong to the other (IP)SCCP
tests in llvm/test/Transforms/SCCP/ and this commits moves them there to
avoid confusion with IPConstantProp.
2020-07-09 17:16:15 +01:00
Florian Hahn a86ce06faf [SCCP] Use conditional info with AND/OR branch conditions.
Currently SCCP does not combine the information of conditions joined by
AND in the true branch or OR in the false branch.

For branches on AND, 2 copies will be inserted for the true branch, with
one being the operand of the other as in the code below. We can combine
the information using intersection. Note that for the OR case, the
copies are inserted in the false branch, where using intersection is
safe as well.

    define void @foo(i32 %a) {
    entry:
      %lt = icmp ult i32 %a, 100
      %gt = icmp ugt i32 %a, 20
      %and = and i1 %lt, %gt
    ; Has predicate info
    ; branch predicate info { TrueEdge: 1 Comparison:  %lt = icmp ult i32 %a, 100 Edge: [label %entry,label %true] }
      %a.0 = call i32 @llvm.ssa.copy.140247425954880(i32 %a)
    ; Has predicate info
    ; branch predicate info { TrueEdge: 1 Comparison:  %gt = icmp ugt i32 %a, 20 Edge: [label %entry,label %false] }
      %a.1 = call i32 @llvm.ssa.copy.140247425954880(i32 %a.0)
      br i1 %and, label %true, label %false

    true:                                             ; preds = %entry
      call void @use(i32 %a.1)
      %true.1 = icmp ne i32 %a.1, 20
      call void @use.i1(i1 %true.1)
      ret void

    false:                                            ; preds = %entry
      call void @use(i32 %a.1)
      ret void
    }

Reviewers: efriedma, davide, mssimpso, nikic

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D77808
2020-07-09 12:59:24 +01:00
Nikita Popov 8691544a27 [SCCP] Use range metadata for loads and calls
When all else fails, use range metadata to constrain the result
of loads and calls. It should also be possible to use !nonnull,
but that would require some general support for inequalities in
SCCP first.

Differential Revision: https://reviews.llvm.org/D83179
2020-07-07 21:09:21 +02:00
Nikita Popov 9dfea03517 [SCCP] Handle assume predicates
Take assume predicates into account when visiting ssa.copy. The
handling is the same as for branch predicates, with the difference
that we're always on the true edge.

Differential Revision: https://reviews.llvm.org/D83257
2020-07-07 20:22:52 +02:00
Nikita Popov 516ff1d4ba [SCCP] Add test for range metadata (NFC) 2020-07-05 21:41:04 +02:00
Florian Hahn f9d8e33c32 [SCCP] Turn sext into zext for non-negative ranges.
This patch updates SCCP/IPSCCP to use the computed range info to turn
sexts into zexts, if the value is known to be non-negative. We already
to a similar transform in CorrelatedValuePropagation, but it seems like
we can catch a lot of additional cases by doing it in SCCP/IPSCCP as
well.

The transform is limited to ranges that are known to not include undef.

Currently constant ranges from conditions are treated as potentially
containing undef, due to PR46144. Once we flip this, the transform will
be more effective in practice.

Reviewers: efriedma, davide

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D81756
2020-06-19 10:17:55 +01:00
Florian Hahn 6aae8ef164 [SCCP] Add a few more additional sext tests (NFC). 2020-06-17 13:39:36 +01:00
Florian Hahn b1130c4f55 [SCCP] Precommit some sext tests (NFC). 2020-06-17 12:00:08 +01:00
Florian Hahn 01f999ae88 [SCCP] Switch to widen at PHIs, stores and call edges.
Currently SCCP does not widen PHIs, stores or along call edges
(arguments/return values), but on operations that directly extend ranges
(like binary operators).

This means PHIs, stores and call edges are not pessimized by widening
currently, while binary operators are. The main reason for widening
operators initially was that opting-out for certain operations was
more straight-forward in the initial implementation (and it did not
matter too much, as range support initially was only implemented for a
very limited set of operations.

During the discussion in D78391, it was suggested to consider flipping
widening to PHIs, stores and along call edges. After adding support for
tracking the number of range extensions in ValueLattice, limiting the
number of range extensions per value is straight forward.

This patch introduces a MaxWidenSteps option to the MergeOptions,
limiting the number of range extensions per value. For PHIs, it seems
natural allow an extension for each (active) incoming value plus 1. For
the other cases, a arbitrary limit of 10 has been chosen initially. It would
potentially make sense to set it depending on the users of a
function/global, but that still needs investigating. This potentially
leads to more state-changes and longer compile-times.

The results look quite promising (MultiSource, SPEC):

Same hash: 179 (filtered out)
Remaining: 58
Metric: sccp.IPNumInstRemoved

Program                                        base    widen-phi diff
 test-suite...ks/Prolangs-C/agrep/agrep.test    58.00   82.00    41.4%
 test-suite...marks/SciMark2-C/scimark2.test    32.00   43.00    34.4%
 test-suite...rks/FreeBench/mason/mason.test     6.00    8.00    33.3%
 test-suite...langs-C/football/football.test   104.00  128.00    23.1%
 test-suite...cations/hexxagon/hexxagon.test    36.00   42.00    16.7%
 test-suite...CFP2000/177.mesa/177.mesa.test   214.00  249.00    16.4%
 test-suite...ngs-C/assembler/assembler.test    14.00   16.00    14.3%
 test-suite...arks/VersaBench/dbms/dbms.test    10.00   11.00    10.0%
 test-suite...oxyApps-C++/miniFE/miniFE.test    43.00   47.00     9.3%
 test-suite...ications/JM/ldecod/ldecod.test   179.00  195.00     8.9%
 test-suite...CFP2006/433.milc/433.milc.test   249.00  265.00     6.4%
 test-suite.../CINT2000/175.vpr/175.vpr.test    98.00  104.00     6.1%
 test-suite...peg2/mpeg2dec/mpeg2decode.test    70.00   74.00     5.7%
 test-suite...CFP2000/188.ammp/188.ammp.test    71.00   75.00     5.6%
 test-suite...ce/Benchmarks/PAQ8p/paq8p.test   111.00  117.00     5.4%
 test-suite...ce/Applications/Burg/burg.test    41.00   43.00     4.9%
 test-suite...000/197.parser/197.parser.test    66.00   69.00     4.5%
 test-suite...tions/lambda-0.1.3/lambda.test    23.00   24.00     4.3%
 test-suite...urce/Applications/lua/lua.test   301.00  313.00     4.0%
 test-suite...TimberWolfMC/timberwolfmc.test    76.00   79.00     3.9%
 test-suite...lications/ClamAV/clamscan.test   991.00  1030.00    3.9%
 test-suite...plications/d/make_dparser.test    53.00   55.00     3.8%
 test-suite...fice-ispell/office-ispell.test    83.00   86.00     3.6%
 test-suite...lications/obsequi/Obsequi.test    28.00   29.00     3.6%
 test-suite.../Prolangs-C/bison/mybison.test    56.00   58.00     3.6%
 test-suite.../CINT2000/254.gap/254.gap.test   170.00  176.00     3.5%
 test-suite.../Applications/lemon/lemon.test    30.00   31.00     3.3%
 test-suite.../CINT2000/176.gcc/176.gcc.test   1202.00 1240.00    3.2%
 test-suite...pplications/treecc/treecc.test    79.00   81.00     2.5%
 test-suite...chmarks/MallocBench/gs/gs.test   357.00  366.00     2.5%
 test-suite...eeBench/analyzer/analyzer.test   103.00  105.00     1.9%
 test-suite...T2006/445.gobmk/445.gobmk.test   1697.00 1724.00    1.6%
 test-suite...006/453.povray/453.povray.test   1812.00 1839.00    1.5%
 test-suite.../Benchmarks/Bullet/bullet.test   337.00  342.00     1.5%
 test-suite.../CINT2000/252.eon/252.eon.test   426.00  432.00     1.4%
 test-suite...T2000/300.twolf/300.twolf.test   214.00  217.00     1.4%
 test-suite...pplications/oggenc/oggenc.test   244.00  247.00     1.2%
 test-suite.../CINT2006/403.gcc/403.gcc.test   4008.00 4055.00    1.2%
 test-suite...T2006/456.hmmer/456.hmmer.test   175.00  177.00     1.1%
 test-suite...nal/skidmarks10/skidmarks.test   430.00  434.00     0.9%
 test-suite.../Applications/sgefa/sgefa.test   115.00  116.00     0.9%
 test-suite...006/447.dealII/447.dealII.test   1082.00 1091.00    0.8%
 test-suite...6/482.sphinx3/482.sphinx3.test   141.00  142.00     0.7%
 test-suite...ocBench/espresso/espresso.test   152.00  153.00     0.7%
 test-suite...3.xalancbmk/483.xalancbmk.test   4003.00 4025.00    0.5%
 test-suite...lications/sqlite3/sqlite3.test   548.00  551.00     0.5%
 test-suite...marks/7zip/7zip-benchmark.test   5522.00 5551.00    0.5%
 test-suite...nsumer-lame/consumer-lame.test   208.00  209.00     0.5%
 test-suite...:: External/Povray/povray.test   1556.00 1563.00    0.4%
 test-suite...000/186.crafty/186.crafty.test   298.00  299.00     0.3%
 test-suite.../Applications/SPASS/SPASS.test   2019.00 2025.00    0.3%
 test-suite...ications/JM/lencod/lencod.test   8427.00 8449.00    0.3%
 test-suite...6/464.h264ref/464.h264ref.test   6797.00 6813.00    0.2%
 test-suite...6/471.omnetpp/471.omnetpp.test   431.00  430.00    -0.2%
 test-suite...006/450.soplex/450.soplex.test   446.00  447.00     0.2%
 test-suite...0.perlbench/400.perlbench.test   1729.00 1727.00   -0.1%
 test-suite...000/255.vortex/255.vortex.test   3815.00 3819.00    0.1%

Reviewers: efriedma, nikic, davide

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D79036
2020-05-29 11:59:17 +01:00
Eli Friedman 4532a50899 Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.

The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.

Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.

This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.

Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.

Differential Revision: https://reviews.llvm.org/D78403
2020-05-14 13:03:50 -07:00