If value tracking can confirm that a shift value is less than the type bitwidth then we can more confidently fold general or(shl(a,x),lshr(b,sub(bw,x))) patterns to a funnel/rotate intrinsic pattern without causing bad codegen regressions in the backend (see D89139).
Reapplied after the shift canonicalization in rG02295e6d1a15 which removed the need to flip the shift values.
Differential Revision: https://reviews.llvm.org/D88783
And another step towards transforms not introducing inttoptr and/or
ptrtoint casts that weren't there already.
As we've been establishing (see D88788/D88789), if there is a int<->ptr cast,
it basically must stay as-is, we can't do much with it.
I've looked, and the most source of new such casts being introduces,
as far as i can tell, is this transform, which, ironically,
tries to reduce count of casts..
On vanilla llvm test-suite + RawSpeed, @ `-O3`, this results in
-33.58% less `IntToPtr`s (19014 -> 12629)
and +76.20% more `PtrToInt`s (18589 -> 32753),
which is an increase of +20.69% in total.
However just on RawSpeed, where i know there are basically
none `IntToPtr` in the original source code,
this results in -99.27% less `IntToPtr`s (2724 -> 20)
and +82.92% more `PtrToInt`s (4513 -> 8255).
which is again an increase of 14.34% in total.
To me this does seem like the step in the right direction,
we end up with strictly less `IntToPtr`, but strictly more `PtrToInt`,
which seems like a reasonable trade-off.
See https://reviews.llvm.org/D88860 / https://reviews.llvm.org/D88995
for some more discussion on the subject.
(Eventually, `CastInst::isNoopCast()`/`CastInst::isEliminableCastPair`
should be taught about this, yes)
Reviewed By: nlopes, nikic
Differential Revision: https://reviews.llvm.org/D88979
As shown in the affected test, we could increase instruction
count without this limitation. There's another test with extra
use that shows we still convert directly to a real "sext" if
possible.
If value tracking can confirm that a shift value is less than the type bitwidth then we can more confidently fold general or(shl(a,x),lshr(b,sub(bw,x))) patterns to a funnel/rotate intrinsic pattern without causing bad codegen regressions in the backend (see D89139).
Differential Revision: https://reviews.llvm.org/D88783
There might be a better way to specify the pre-conditions,
but this is hopefully clearer than the way it was written:
https://rise4fun.com/Alive/Jhk3
Pre: C2 < 0 && isShiftedMask(C2) && (C1 == C1 & C2)
%a = and %x, C2
%r = add %a, C1
=>
%a2 = add %x, C1
%r = and %a2, C2
Annoyingly vectors aren't supported by shouldChangeType(), but we have precedents for always performing this on vector types (e.g. narrowBinOp).
Differential Revision: https://reviews.llvm.org/D89067
Pre-conditions seem to be optimal, but we don't need a use check
because we are only replacing an add with a sub.
https://rise4fun.com/Alive/hzN
Pre: (~C1 | C2 == -1) && isPowerOf2(C2+1)
%m = and i8 %x, C1
%f = xor i8 %m, C2
%r = add i8 %f, C3
=>
%r = sub i8 C2 + C3, %m
Complete basic PR46895 fixes by refactoring D87452/D88402 to allow us to match non-uniform constant values.
We still don't handle non-uniform vectors that contain undef elements, but that can wait until we have a decent generic mechanism for this.
Differential Revision: https://reviews.llvm.org/D88420
First step towards extending the existing rotation support to full funnel shift handling now that the backend legalization support has improved.
This enables us to match the shift by constant cases, which are pretty trivial to expand again if necessary.
D88420 will add non-uniform support for funnel shifts as well once its been finalized.
Differential Revision: https://reviews.llvm.org/D88834
In some cases, we can negate instruction if only one of it's operands
negates. Previously, we assumed that constants would have been
canonicalized to RHS already, but that isn't guaranteed to happen,
because of InstCombine worklist visitation order,
as the added test (previously-hanging) shows.
So if we only need to negate a single operand,
we should ensure ourselves that we try constant operand first.
Do that by re-doing the complexity sorting ourselves,
when we actually care about it.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47752
Some of these depended on analyses being present that aren't provided
automatically in NPM.
early_dce_clobbers_callgraph.ll was previously inlining a noinline function?
cast-call-combine.ll relied on the legacy always-inline pass being a
CGSCC pass and getting rerun.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D88187
(it was introduced in https://lists.llvm.org/pipermail/llvm-dev/2015-January/080956.html)
This canonicalization seems dubious.
Most importantly, while it does not create `inttoptr` casts by itself,
it may cause them to appear later, see e.g. D88788.
I think it's pretty obvious that it is an undesirable outcome,
by now we've established that seemingly no-op `inttoptr`/`ptrtoint` casts
are not no-op, and are no longer eager to look past them.
Which e.g. means that given
```
%a = load i32
%b = inttoptr %a
%c = inttoptr %a
```
we likely won't be able to tell that `%b` and `%c` is the same thing.
As we can see in D88789 / D88788 / D88806 / D75505,
we can't really teach SCEV about this (not without the https://bugs.llvm.org/show_bug.cgi?id=47592 at least)
And we can't recover the situation post-inlining in instcombine.
So it really does look like this fold is actively breaking
otherwise-good IR, in a way that is not recoverable.
And that means, this fold isn't helpful in exposing the passes
that are otherwise unaware of these patterns it produces.
Thusly, i propose to simply not perform such a canonicalization.
The original motivational RFC does not state what larger problem
that canonicalization was trying to solve, so i'm not sure
how this plays out in the larger picture.
On vanilla llvm test-suite + RawSpeed, this results in
increase of asm instructions and final object size by ~+0.05%
decreases final count of bitcasts by -4.79% (-28990),
ptrtoint casts by -15.41% (-3423),
and of inttoptr casts by -25.59% (-6919, *sic*).
Overall, there's -0.04% less IR blocks, -0.39% instructions.
See https://bugs.llvm.org/show_bug.cgi?id=47592
Differential Revision: https://reviews.llvm.org/D88789
When retrying the "simplify with operand replaced" select
optimization without poison flags, also handle inbounds on GEPs.
Of course, this particular example would also be safe to transform
while keeping inbounds, but the underlying machinery does not
know this (yet).
Added missing test coverage for shl(add(and(lshr(x,c1),c2),y),c1) -> add(and(x,c2<<c1),shl(y,c1)) combine
Rename tests as 'foo' and 'bar' isn't very extensible
Added vector tests with undefs and nonuniform constants
Add basic vector handling to recognizeBSwapOrBitReverseIdiom/collectBitParts - this works at the element level, all vector element operations must match (splat constants etc.) and there is no cross-element support (insert/extract/shuffle etc.).
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Reapplied with early-out if recognizeBSwapOrBitReverseIdiom collects a source wider than the result type.
Differential Revision: https://reviews.llvm.org/D88578
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Differential Revision: https://reviews.llvm.org/D88578
When replacing X == Y ? f(X) : Z with X == Y ? f(Y) : Z, make sure
that Y cannot be undef. If it may be undef, we might end up picking
a different value for undef in the comparison and the select
operand.
As mentioned on PR47191, if we're bswap'ing some bytes and the zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
PR39793 demonstrated an issue where we fail to recognize 'partial' bswap patterns of the lower bytes of an integer source.
In fact, most of this is already in place collectBitParts suitably tags zero bits, so we just need to correctly handle this case by finding the zero'd upper bits and reducing the bswap pattern just to the active demanded bits.
Differential Revision: https://reviews.llvm.org/D88316
I think we initially made this fold conservative to be safer, but we do not
need the alignment attribute/metadata limitation because the masked load
intrinsic itself specifies the alignment. A normal vector load is better for
IR transforms and should be no worse in codegen than the masked alternative.
If it is worse for some target, the backend can reverse this transform.
Differential Revision: https://reviews.llvm.org/D88505
Attempt to fold trunc (*shr (trunc A), C) --> trunc(*shr A, C) iff the shift amount if small enough that all zero/sign bits created by the shift are removed by the last trunc.
Helps fix the regressions encountered in D88316.
I've tweaked a couple of shift values as suggested by @lebedev.ri to ensure we have coverage of shift values close (above/below) to the max limit.
Differential Revision: https://reviews.llvm.org/D88429
This is a repeat of 1880092722 from 2009. We should have less risk
of hitting bugs at this point because we auto-generate positive CHECK
lines only, but this makes things consistent.
Copying the original commit msg:
"Change tests from "opt %s" to "opt < %s" so that opt doesn't see the
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename."
This came from @lebedev.ri's suggestion to use m_SpecificInt_ICMP for D88429 - since I was going to change the m_APInt to m_Constant for that patch I thought I would do it for the only other user of the APInt first.
I've added a ConstantExpr::getUMin helper - its trivial to add UMAX/SMIN/SMAX but thought I'd wait until we have use cases.
Differential Revision: https://reviews.llvm.org/D88475
Handle the case when all inputs of phi are proven to be non zero.
Constants are checked in beginning of this method before check for depth of recursion,
so it is a partial case of non-constant phi.
Recursion depth is already handled by the function.
Reviewers: aqjune, nikic, efriedma
Reviewed By: nikic
Subscribers: dantrushin, hiraditya, jdoerfert, llvm-commits
Differential Revision: https://reviews.llvm.org/D88276
Fixes minor bug in D88402 where we were using the original shift constant (with undefs) instead of one with the splat values (re)splatted to all elements.
This patch adds handling of rotation patterns with constant shift amounts - the next bit will be how we want to support non-uniform constant vectors.
Differential Revision: https://reviews.llvm.org/D87452
Pulled from D87452, this is a fixed version of the collectBitParts fshl/fshr handling which as @nikic noticed wasn't checking for different providers or had correct bit ordering (which was hid by only testing shift amounts of bitwidth/2).
Differential Revision: https://reviews.llvm.org/D88292
The langref already states it does, but this wasn't implemented. Also
covers inalloca and preallocated. Also helps fix a dependence on
pointer element types.
In this patch I've fixed some warnings that arose from the implicit
cast of TypeSize -> uint64_t. I tried writing a variety of different
cases to show how this optimisation might work for scalable vectors
and found:
1. The optimisation does not work for cases where the cast type
is scalable and the allocated type is not. This because we need to
know how many times the cast type fits into the allocated type.
2. If we pass all the various checks for the case when the allocated
type is scalable and the cast type is not, then when creating the
new alloca we have to take vscale into account. This leads to
sub-optimal IR that is worse than the original IR.
3. For the remaining case when both the alloca and cast types are
scalable it is hard to find examples where the optimisation would
kick in, except for simple bitcasts, because we typically fail the
ABI alignment checks.
For now I've changed the code to bail out if only one of the alloca
and cast types is scalable. This means we continue to support the
existing cases where both types are fixed, and also the specific case
when both types are scalable with the same size and alignment, for
example a simple bitcast of an alloca to another type.
I've added tests that show we don't attempt to promote the alloca,
except for simple bitcasts:
Transforms/InstCombine/AArch64/sve-cast-of-alloc.ll
Differential revision: https://reviews.llvm.org/D87378
-debug-pass is a legacy PM only option.
Some tests checks that the pass returned that it made a change,
which is not relevant to the NPM, since passes return PreservedAnalyses.
Some tests check that passes are freed at the proper time, which is also
not relevant to the NPM.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87945
A conversion from `pow` to `sqrt` shall not call an `errno`-setting
`sqrt` with -//infinity//: the `sqrt` will set `EDOM` where the `pow`
call need not.
This patch avoids the erroneous (pun not intended) transformation by
applying the restrictions discussed in the thread for
https://lists.llvm.org/pipermail/llvm-dev/2020-September/145051.html.
The existing tests are updated (depending on emphasis in the checks for
library calls, avoidance of overlap, and overall coverage):
- to add `ninf`, retaining the intended library call,
- to use the intrinsic, retaining the use of `select`, or
- to expect the replacement to not occur.
The following is tested:
- The pow intrinsic folds to a `select` instruction to
handle -//infinity//.
- The pow library call folds, with `ninf`, to `sqrt` without the
`select` instruction associated with handling -//infinity//.
- The pow library call does not fold to `sqrt` without `ninf`.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D87877
The current code for handling pow(x, y) where y is an integer plus 0.5
is not explicitly guarded against attempting to transform the case where
abs(y) is exactly 0.5.
The latter case is meant to be handled by `replacePowWithSqrt`. Indeed,
if the pow(x, integer+0.5) case proceeds past a certain point, it will
hit an assertion by attempting to form pow(x, 0) using `getPow`.
This patch adds an explicit check to prevent attempting the
pow(x, integer+0.5) transformation on pow(x, +/-0.5) as suggested during
the review of D87877. This has the effect of retaining the shrinking of
`pow` to `powf` when the `sqrt` libcall cannot be formed.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D88066
This pass is like DeadCodeEliminationPass, but only does one pass
through a function instead of iterating on users of eliminated
instructions.
DeadCodeEliminationPass should be used in all cases.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87933
We do similar factorization folds in SimplifyUsingDistributiveLaws,
but that drops no-wrap properties. Propagating those optimally may
help solve:
https://llvm.org/PR47430
The propagation is all-or-nothing for these patterns: when all
3 incoming ops have nsw or nuw, the 2 new ops should have the
same no-wrap property:
https://alive2.llvm.org/ce/z/Dv8wsU
This also solves:
https://llvm.org/PR47584
The test (currently crashing) is reduced from the example provided
in the post-commit discussion in D87149.
Differential Revision: https://reviews.llvm.org/D87965