This is a simple patch to teach OpenMP codegen to emit the construct
in Generic mode.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29143
llvm-svn: 293183
Summary:
For example, when we change 'na' to "nb::nc", we need to add leading '::' to
references "::nc::X" in the changed namespace.
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D29176
llvm-svn: 293182
And teach shouldAssumeDSOLocal that ppc has no copy relocations.
The resulting code handle a few more case than before. For example, it
knows that a weak symbol can be resolved to another .o file, but it
will still be in the main executable.
llvm-svn: 293180
Inlining in getAddExpr() can cause abnormal computational time in some cases.
New parameter -scev-addops-inline-threshold is intruduced with default value 500.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D28812
llvm-svn: 293176
Pulled out code that removed unused inputs from a target shuffle mask into a helper function to allow it to be reused in a future commit.
llvm-svn: 293175
Summary:
This should make it possible to easily add everything needed to import all
the existing SelectionDAG rules. It should also serve the likely
kinds of GlobalISel rules (some of which are not currently representable
in SelectionDAG) once we've nailed down the tablegen definition for that.
The hierarchy is as follows:
MatcherRule - A matching rule. Currently used to emit C++ ISel code but will
| also be used to emit test cases and tablegen definitions in the
| near future.
|- Instruction(s) - Represents the instruction to be matched.
|- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an
| instruction.
\- Operand(s) - Represents a particular operand of the instruction. In the
| future, there may be subclasses to test the same predicates
| on multiple operands (including for variadic instructions).
\ Operand Predicate(s) - Test the type, register bank, etc. of an operand.
This is where the ComplexPattern equivalent
will be represented. It's also
nested-instruction matching will live as a
predicate that follows the DefUse chain to the
Def and tests a MatcherRule from that position.
Support for multiple instruction matchers in a rule has been retained from
the existing code but has been adjusted to assert when it is used.
Previously it would silently drop all but the first instruction matcher.
The tablegen-erated file is not functionally changed but has more
parentheses and no longer attempts to format the if-statements since
keeping track of the indentation is tricky in the presence of the matcher
hierarchy. It would be nice to have CMakes tablegen() run the output
through clang-format (when available) so we don't have to complicate
TableGen with pretty-printing.
It's also worth mentioning that this hierarchy will also be able to emit
TableGen definitions and test cases in the near future. This is the reason
for favouring explicit emit*() calls rather than the << operator.
Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab
Reviewed By: ab
Subscribers: igorb, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D28942
llvm-svn: 293172
Before this change the user only saw "Unspecified Error", when a region
contained the entry block. Now we report:
"Scop contains function entry (not yet supported)."
llvm-svn: 293169
change the set of uniform instructions in the loop causing an assert
failure.
The problem is that the legalization checking also builds data
structures mapping various facts about the loop body. The immediate
cause was the set of uniform instructions. If these then change when
LCSSA is formed, the data structures would already have been built and
become stale. The included test case triggered an assert in loop
vectorize that was reduced out of the new PM's pipeline.
The solution is to form LCSSA early enough that no information is cached
across the changes made. The only really obvious position is outside of
the main logic to vectorize the loop. This also has the advantage of
removing one case where forming LCSSA could mutate the loop but we
wouldn't track that as a "Changed" state.
If it is significantly advantageous to do some legalization checking
prior to this, we can do a more careful positioning but it seemed best
to just back off to a safe position first.
llvm-svn: 293168
This patch makes one change to GOT handling and two changes to N64's
relocation model handling. Furthermore, the jumptable encodings have
been corrected for static N64.
Big GOT handling is now done via a new SDNode MipsGotHi - this node is
unconditionally lowered to an lui instruction.
The first change to N64's relocation handling is the lifting of the
restriction that N64 always uses PIC. Now it is possible to target static
environments.
The second change adds support for 64 bit symbols and enables them by
default. Previously N64 had patterns for sym32 mode only. In this mode all
symbols are assumed to have 32 bit addresses. sym32 mode support
is selectable with attribute 'sym32'. A follow on patch for clang will
add the necessary frontend parameter.
This partially resolves PR/23485.
Thanks to Brooks Davis for reporting the issue!
Reviewers: dsanders, seanbruno, zoran.jovanovic, vkalintiris
Differential Revision: https://reviews.llvm.org/D23652
llvm-svn: 293164
Add support for loading i1, i8 and i16 arguments from the stack, with or without
the ABI extension flags.
When the ABI extension flags are present, we load a 4-byte value, otherwise we
preserve the size of the load and let the instruction selector replace it with a
LDRB/LDRH. This generates the same thing as DAGISel.
Differential Revision: https://reviews.llvm.org/D27803
llvm-svn: 293163
with it.
This code was dereferencing the PoisoningVH which isn't allowed once it
is poisoned. But the code itself really doesn't need to access the
pointer, it is just doing the safe stuff of clearing out data structures
keyed on the pointer value.
Change the code to use iterators to erase directly from a DenseMap. This
is also substantially more efficient as it avoids lots of hashing and
lookups to do the erasure. DenseMap supports iterating behind the
iteration which is fairly easy to implement.
Sadly, I don't have a test case here. I'm not even close and I don't
know that I ever will be. The issue is that several of the tricky
aspects of fixing this only show up when you cause the stack's
SmallVector to be in *EXACTLY* the right location. I only ever got
a reproduction for those with Clang, and only with *exactly* the right
command line flags. Any adjustment, even to seemingly unrelated flags,
would make partial and half-way solutions magically start to "work". In
good news, all of this was caught with the LLVM test suite. Also, there
is no *specific* code here that is untested, just that the old pattern
of code won't immediately fail on any test case I've managed to
contrive.
llvm-svn: 293160
Refactoring to remove duplications of this method.
New method getOperandsScalarizationOverhead() that looks at the present unique
operands and add extract costs for them. Old behaviour was to just add extract
costs for one operand of the type always, which still happens in
getArithmeticInstrCost() if no operands are provided by the caller.
This is a good start of improving on this, but there are more places
that can be improved by using getOperandsScalarizationOverhead().
Review: Hal Finkel
https://reviews.llvm.org/D29017
llvm-svn: 293155
This intrinsic uses bit 0 and bit 4 of an immediate argument to determine which bits of its inputs to read. This patch uses this information to simplify the demanded elements of the input vectors.
Differential Revision: https://reviews.llvm.org/D28979
llvm-svn: 293151
The handler that deals with IR passed/missed/analysis remarks is extended to
also handle the corresponding MIR remarks.
The more thorough testing in done via llc (rL293113, rL293121). Here we just
make sure that the functionality is accessible through clang.
llvm-svn: 293146
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.
I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.
Differential Revision: https://reviews.llvm.org/D28897
llvm-svn: 293136
requires that this private framework be available - and it is not
available earlier than macOS 10.12 - to build lldb), dlopen the
framework binary on demand in debugserver. We're already using
dlsym() to look up all the symbols so there is no need to use weak
linking here.
<rdar://problem/30158797>
llvm-svn: 293135
Instead of using the location of the beginning '-'/'+'.
This is consistent with location used for function decls and ObjC method calls where we use the base name as the location as well.
llvm-svn: 293134
directly walks the current loop structure verifying that a matching
structure can be found in a freshly computed version.
Also pull things out of containers when necessary once an issue is found
and print them directly.
This makes it substantially easier to debug verification failures as
the process stops at the exact point in the loop nest where they diverge
and has in easily accessed local variables (or printed to stderr
already) the loops and other information needed to analyze the failure.
Differential Revision: https://reviews.llvm.org/D29142
llvm-svn: 293133