This allows LLVM's LTO to internalize symbols that are not referenced
directly by regular objects. Naturally, this means we need to track
which symbols are referenced by regular objects. The approach taken here
is similar to LLD-COFF's: like the COFF port, we extend
`SymbolTable::insert()` to set the isVisibleToRegularObj bit. (LLD-ELF
relies on the Symbol constructor and `Symbol::mergeProperties()`, but
the Mach-O port does not have a `mergeProperties()` equivalent.)
From what I can tell, ld64 (which uses libLTO) doesn't do this
optimization at all. I'm not even sure libLTO provides a way to do this.
Not having ld64's behavior as a reference implementation is unfortunate;
instead, I am relying on LLD-ELF/COFF's behavior as references while
erring on the conservative side. In particular, LLD-MachO will only do
this optimization for executables right now.
We also don't attempt it when `-flat_namespace` is used -- otherwise
we'd need scan the symbol table to find matches for every un-namespaced
symbol reference, which is expensive.
internalize.ll is based off the LLD-ELF tests `internalize-basic.ll` and
`internalize-undef.ll`. Looks like @davide added some of LLD-ELF's internalize
tests, so adding him as a reviewer...
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D99105
This is a different approach from D98993 that should achieve most of the
same benefit. The two changes are:
1. Sort the list of associated child sections by section name
2. Do not consider associated sections to have children themselves
This fixes the main issue, which was that we sometimes considered an
.xdata section to have a child .pdata section. That lead to slow links
and larger binaries (less xdata folding).
Otherwise, this should be NFC: we go back to ignoring .debug/.gljmp and
other metadata sections rather than only looking at pdata/xdata. We
discovered that we do care about other associated sections, like ASan
global registration metadata.
chmod tries to be very helpful on some platforms and prevent naive mistakes, by warning the user. This results in the following error during the test:
```chmod: ...resolution-err.ll.tmp.resolution.txt: new permissions are r--rw-rw-, not r--r--r--```
To fix the test, call chmod with u.
Differential Revision: https://reviews.llvm.org/D100417
arm64_32 uses 32-bit GOT loads, so we should accept those
instructions in `ARM64Common::relaxGotLoad()` too.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D100229
It doesn't make sense to take just the base filename for archives when we emit
the full path for object files. (LLD-ELF emits the full path too.)
This will also make it easier to write a proper test for {D100147}.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D100357
This could probably have been part of D99633, but I split it up to make
things a bit more reviewable. I also fixed some bugs in the implementation that
were masked through integer underflows when operating in 64-bit mode.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D99823
From what I can tell, it's pretty similar to arm64. The two main differences
are:
1. No 64-bit relocations
2. Stub code writes to 32-bit registers instead of 64-bit
Plus of course the various on-disk structures like `segment_command` are using
the 32-bit instead of the 64-bit variants.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D99822
Swift builds seem to use it. All it requires is emitting the
corresponding paths as STABS.
Fixes llvm.org/PR49385.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D100076
The test is loosely based off LLD-ELF's `thinlto.ll`. However, I
found that test questionable because the the -save_temps behavior it
checks for is identical regardless of whether we are running in single-
or multi-threaded mode. I tried writing a test based on `--time-trace`
but couldn't get it to run deterministically... so I've opted to just
skip checking that behavior for now.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D99356
If either `time-trace-granularity` or `time-trace-file` is specified, then don't make users specify `-time-trace`.
It seems silly that I have to type all three options, eg, `-time-trace -time-trace-file=- -time-trace-granularity=...`.
Differential Revision: https://reviews.llvm.org/D100011
We had been giving them a string index of zero, which actually corresponds to a
string with a single space due to {D89639}.
This was far from obvious in the old test because llvm-nm doesn't quote the
symbol names, making the empty string look identical to a string of a single
space. `dsymutil -s` quotes its strings, so I've changed the test accordingly.
Fixes llvm.org/PR48714. Thanks @clayborg for the tips!
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D100003
I noticed two problems with the previous implementation:
* N_ALT_ENTRY symbols weren't being handled correctly -- they should
determine the size of the previous symbol, even though they don't
cause a new section to be created
* The last symbol in a section had its size calculated wrongly;
the first subsection's size was used instead of the last one
I decided to take the opportunity to refactor things as well, mainly to
realize my observation
[here](https://reviews.llvm.org/D98837#inline-931511) that we could
avoid doing a binary search to match symbols with subsections. I think
the resulting code is a bit simpler too.
N Min Max Median Avg Stddev
x 20 4.31 4.43 4.37 4.3775 0.034162922
+ 20 4.32 4.43 4.38 4.3755 0.02799906
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D99972
"stub" is a bit too overloaded... we were using it to refer to
TAPI files, but it's also the name for the PLT trampolines in Mach-O.
Going ahead, let's just use "TAPI" or ".tbd" to refer to TAPI stuff.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D99807
From the PowerPC ELFv2 ABI section 4.2.3. Global Offset Table.
```
The GOT consists of an 8-byte header that contains the TOC base (the first TOC
base when multiple TOCs are present), followed by an array of 8-byte addresses.
```
Due to the introduction of PC Relative code it is now possible to require a GOT
without having a .TOC. symbol in the object that is being linked. Since LLD uses
the .TOC. symbol to determine whether or not a GOT is required the GOT header is
not setup correctly and the 8-byte header is missing.
This patch allows the Power PC GOT setup to happen when an element is added to
the GOT instead of at the very begining. When this header is added a .TOC.
symbol is also added.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D91426
The functionality was originally added in {D95265}, but the test in that
diff only checked if `-ObjC` would cause bitcode containing ObjC class
symbols to be loaded. It neglected to test for bitcode containing
categories but no class symbols.
This diff also changes the lto-archive.ll test to use `-why_load`
instead of inspecting the output binary's symbol table. This is
motivated by the stacked diff {D99105}, which will hide irrelevant
bitcode symbols.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D99215
Summary: We needed to use `Joined` instead of `Flag`. This wasn't caught
because the relevant test that was copied from LLD-ELF was still
invoking LLD-ELF instead of LLD-MachO...
Differential Revision: https://reviews.llvm.org/D99313
Pretty simple code-wise. Also threw in some refactoring:
* Put the functionStartSection under Writer instead of InStruct, since
it doesn't need to be accessed outside of Writer
* Adjusted the test to put all files under the temp dir instead of at
the top-level
* Added some CHECK-LABELs to make it clearer where the function starts
data is
Differential Revision: https://reviews.llvm.org/D99112
Don't run the 'tar' tool in a cleared environment with only the
LANG variable set, just set LANG on top of the existing environment.
If the 'tar' tool is an MSYS based tool, running it in a Windows
Container hangs if all environment variables are cleared - in
particular, the USERPROFILE variable needs to be kept intact.
This is the same issue fixed as was fixed in other places in
9de63b2e05, but contrary to running
the actual tests, running with an as-cleared-as-possible environment
here is less important.
Differential Revision: https://reviews.llvm.org/D99304
This patch renames the "Initial" member of WasmLimits to the name used
in the spec, "Minimum".
In the core WebAssembly specification, the Limits data type has one
required "min" member and one optional "max" member, indicating the
minimum required size of the corresponding table or memory, and the
maximum size, if any.
Although the WebAssembly spec does instantiate locally-defined tables
and memories with the initial size being equal to the minimum size, it
can't impose such a requirement for imports. It doesn't make sense to
require an initial size for a memory import, for example. The compiler
can only sensibly express the minimum and maximum sizes.
See
https://github.com/WebAssembly/js-types/blob/master/proposals/js-types/Overview.md#naming-of-size-limits
for a related discussion that agrees that the right name of "initial" is
"minimum" when querying the type of a table or memory from JavaScript.
(Of course it still makes sense for JS to speak in terms of an initial
size when it explicitly instantiates memories and tables.)
Differential Revision: https://reviews.llvm.org/D99186
This reverts commit 4876ba5b2d.
Third-attemp relanding D98559, new change:
- explicitly cast enum to underlying type to avoid ambiguity (workaround to clang's bug).
This reverts commit 3c21166a94.
The build is broken (clang-8 host compiler):
lld/MachO/DriverUtils.cpp:271:8: error: use of overloaded operator '<<' is ambiguous (with operand types 'llvm::raw_fd_ostream' and 'lld::macho::DependencyTracker::DepOpCode')
os << opcode;
~~ ^ ~~~~~~
This reverts commit 9670d2e4af.
Second attemp to reland D98559. New changes:
- inline functions removed from cpp file.
- updated tests to use CHECK-DAG instead of CHECK-NEXT
- fixed ambiguous "<<" operator by switching `char` to uint8_t
The only known reason why ICF should not merge otherwise identical
sections with differing associated sections has to do with exception
handling tables. It's not clear what ICF should do when there are other
kinds of associated sections. In every other case when this has come up,
debug info and CF guard metadata, we have opted to make ICF ignore the
associated sections.
For comparison, ELF doesn't do anything for comdat groups. Instead,
.eh_frame is parsed to figure out if a section has an LSDA, and if so,
ICF is disabled.
Another issue is that the order of associated sections is not defined.
We have had issues in the past (crbug.com/1144476) where changing the
order of the .xdata/.pdata sections in the object file lead to large ICF
slowdowns.
To address these issues, I decided it would be best to explicitly
consider only .pdata and .xdata sections during ICF. This makes it easy
to ignore the object file order, and I think it makes the intention of
the code clearer.
I've also made the children() accessor return an empty list for
associated sections. This mostly only affects ICF and GC. This was the
behavior before I made this a linked list, so the behavior change should
be good. This had positive effects on chrome.dll: more .xdata sections
were merged that previously could not be merged because they were
associated with distinct .pdata sections.
Reviewed By: mstorsjo
Differential Revision: https://reviews.llvm.org/D98993
This reverts commit 2554b95db5.
Relanding [lld-macho] Implement -dependency_info (D98559) with changes:
- inline functions removed from cpp file.
- updated tests to not check libSystem.tbd with other input files (because of possible indeterministic ordering)
There is a bug when initial exec is relaxed to local exec.
In the following situation:
InitExec.c
```
extern __thread unsigned TGlobal;
unsigned getConst(unsigned*);
unsigned addVal(unsigned, unsigned*);
unsigned GetAddrT() {
return addVal(getConst(&TGlobal), &TGlobal);
}
```
Def.c
```
__thread unsigned TGlobal;
unsigned getConst(unsigned* A) {
return *A + 3;
}
unsigned addVal(unsigned A, unsigned* B) {
return A + *B;
}
```
The problem is in InitExec.c but Def.c is required if you want to link the example and see the problem.
To compile everything:
```
clang -O3 -mcpu=pwr10 -c InitExec.c
clang -O3 -mcpu=pwr10 -c Def.c
ld.lld InitExec.o Def.o -o IeToLe
```
If you objdump the problem object file:
```
$ llvm-objdump -dr --mcpu=pwr10 InitExec.o
```
you will get the following assembly:
```
0000000000000000 <GetAddrT>:
0: a6 02 08 7c mflr 0
4: f0 ff c1 fb std 30, -16(1)
8: 10 00 01 f8 std 0, 16(1)
c: d1 ff 21 f8 stdu 1, -48(1)
10: 00 00 10 04 00 00 60 e4 pld 3, 0(0), 1
0000000000000010: R_PPC64_GOT_TPREL_PCREL34 TGlobal
18: 14 6a c3 7f add 30, 3, 13
0000000000000019: R_PPC64_TLS TGlobal
1c: 78 f3 c3 7f mr 3, 30
20: 01 00 00 48 bl 0x20
0000000000000020: R_PPC64_REL24_NOTOC getConst
24: 78 f3 c4 7f mr 4, 30
28: 30 00 21 38 addi 1, 1, 48
2c: 10 00 01 e8 ld 0, 16(1)
30: f0 ff c1 eb ld 30, -16(1)
34: a6 03 08 7c mtlr 0
38: 00 00 00 48 b 0x38
0000000000000038: R_PPC64_REL24_NOTOC addVal
```
The lines of interest are:
```
10: 00 00 10 04 00 00 60 e4 pld 3, 0(0), 1
0000000000000010: R_PPC64_GOT_TPREL_PCREL34 TGlobal
18: 14 6a c3 7f add 30, 3, 13
0000000000000019: R_PPC64_TLS TGlobal
1c: 78 f3 c3 7f mr 3, 30
```
Which once linked gets turned into:
```
10010210: ff ff 03 06 00 90 6d 38 paddi 3, 13, -28672, 0
10010218: 00 00 00 60 nop
1001021c: 78 f3 c3 7f mr 3, 30
```
The problem is that register 30 is never set after the optimization.
Therefore it is not correct to relax the above instructions by replacing
the add instruction with a nop.
Instead the add instruction should be replaced with a copy (mr) instruction.
If the add uses the same resgiter as input and as ouput then it is safe to
continue to replace the add with a nop.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D95262
This reverts commit c53a1322f3.
Test only passes depending on build dir having a lexicographically later name
than the source dir, and doesn't link on mac/win. See
https://reviews.llvm.org/D98559#2640265 onward.
Bug: https://bugs.llvm.org/show_bug.cgi?id=49278
The flag is not well documented, so this implementation is based on observed behaviour.
When specified, `-dependency_info <path>` produced a text file containing information pertaining to the current linkage, such as input files, output file, linker version, etc.
This file's layout is also not documented, but it seems to be a series of null ('\0') terminated strings in the form `<op code><path>`
`<op code>` could be:
`0x00` : linker version
`0x10` : input
`0x11` : files not found(??)
`0x40` : output
`<path>` : is the file path, except for the linker-version case.
(??) This part is a bit unclear. I think it means all the files the linker attempted to look at, but could not find.
Differential Revision: https://reviews.llvm.org/D98559
`--shuffle-sections=<seed>` applies to all sections. The new
`--shuffle-sections=<section-glob>=<seed>` makes shuffling selective. To the
best of my knowledge, the option is only used as debugging, so just drop the
original form.
`--shuffle-sections '.init_array*=-1'` `--shuffle-sections '.fini_array*=-1'`.
reverses static constructors/destructors of the same priority.
Useful to detect some static initialization order fiasco.
`--shuffle-sections '.data*=-1'`
reverses `.data*` sections. Useful to detect unfunded pointer comparison results
of two unrelated objects.
If certain sections have an intrinsic order, the old form cannot be used.
Differential Revision: https://reviews.llvm.org/D98679
If the number of sections changes, which is common for re-links after
incremental updates, the section order may change drastically.
Special case -1 to reverse input sections. This is a stable transform.
The section order is more resilient to incremental updates. Usually the
code issue (e.g. Static Initialization Order Fiasco, assuming pointer
comparison result of two unrelated objects) is due to the relative order
between two problematic input files A and B. Checking the regular order
and the reversed order is sufficient.
Differential Revision: https://reviews.llvm.org/D98445
This fixes defects in D98223 [lld-macho] implement options -(un)exported_symbol(s_list):
* disallow export of hidden symbols
* verify that whitelisted literal names are defined in the symbol table
* reflect export-status overrides in `nlist` attribute of `N_EXT` or `N_PEXT`
Thanks to @thakis for raising these issues
Differential Revision: https://reviews.llvm.org/D98381
Visual Studios implementation of the C++ Standard Library does not use strerror to produce a message for std::error_code unlike other standard libraries such as libstdc++ or libc++ that might be used.
This patch adds a cmake script that through running a C++ program gets the error messages for the POSIX error codes and passes them onto lit through an optional config parameter.
If the config parameter is not set, or getting the messages failed, due to say a cross compiling configuration without an emulator, it will fall back to using pythons strerror functions.
Differential Revision: https://reviews.llvm.org/D98278
This pleases the codesign
(Otherwise it complains about "function starts data out of place")
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D98648
Summary: The exact out-of-range value seems to differ by 8 bytes on the
buildbots compared to my local machine. I'm guessing it has something to
do with what inputs we are getting from llvm-mc. Not sure why, but I
don't think it's super important -- let's just ignore the number, the
out-of-range message is the important thing here
Previously, it was difficult to write code that handled both synthetic
and regular sections generically. We solve this problem by creating a
fake InputSection at the start of every SyntheticSection.
This refactor allows us to handle DSOHandle like a regular Defined
symbol (since Defined symbols must be attached to an InputSection), and
paves the way for supporting `__mh_*header` symbols. Additionally, it
simplifies our binding/rebase code.
I did have to extend Defined a little -- it now has a `linkerInternal`
flag, to indicate that `___dso_handle` should not be in the final symbol
table.
I've also added some additional testing for `___dso_handle`.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D98545
This diff required fixing `getEmbeddedAddend` to apply sign
extension to 32-bit values. We were previously passing around wrong
64-bit addend values that became "right" after being truncated back to
32-bit.
I've also made `getEmbeddedAddend` return a signed int, which is similar
to what LLD-ELF does for its `getImplicitAddend`.
`reportRangeError`, `checkUInt`, and `checkInt` are counterparts of similar
functions in LLD-ELF.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98387
There are 3 remaining tests that still have `REQUIRE: shell`:
* color-diagnostics.test -- seems necessary for ANSI escape sequence support
* stabs.s -- the shell part could be removed, but I don't think we can support
the test on Windows anyway due to its reliance on `touch` to set the modtime
* framework.s -- uses symlinks, I'm not sure this works on Windows
Addresses PR49512.
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D98395
SUBTRACTOR relocations are always paired with UNSIGNED
relocations to indicate a pair of symbols whose address difference we
want. Functionally they are like a single relocation: only one pointer
gets written / relocated. Previously, we would handle these pairs by
skipping over the SUBTRACTOR relocation and writing the pointer when
handling the UNSIGNED reloc. This diff reverses things, so we write
while handling SUBTRACTORs and skip over the UNSIGNED relocs instead.
Being able to distinguish between SUBTRACTOR and UNSIGNED relocs in the
write phase (i.e. inside `relocateOne`) is useful for the upcoming range
check diff: we want to check that SUBTRACTOR relocs write signed values,
but UNSIGNED relocs (naturally) write unsigned values.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98386
The previous implementation miscalculated the addend, resulting
in an underflow. This meant that every SIGNED_N section relocation would
be associated with the last subsection (since the addend would now be a
huge number). We were "lucky" that this mistake was typically cancelled
out -- 64-to-32-bit-truncation meant that the final value was correct,
as long as subsections were not rearranged.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98385
GNU ld supports `.` and `$` in symbol names while LLD doesn't support them in
`readPrimary` expressions. Using `.` can result in such an error:
```
https://github.com/ClangBuiltLinux/linux/issues/1318
ld.lld: error: ./arch/powerpc/kernel/vmlinux.lds:255: malformed number: .TOC.
>>> __toc_ptr = (DEFINED (.TOC.) ? .TOC. : ADDR (.got)) + 0x8000;
```
Allow `.` (ppc64 special symbol `.TOC.`) and `$` (RISC-V special symbol `__global_pointer$`).
Change `diag[3-5].test` to use an invalid character `^`.
Note: GNU ld allows `~` in non-leading positions of a symbol name. `~`
is not used in practice, conflicts with the unary operator, and can
cause some parsing difficulty, so this patch does not add it.
Differential Revision: https://reviews.llvm.org/D98306
This is the minimal port from ELF. Any extension should easy from here
Test plan: ninja check-all-macho
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98419
The flag doesn't (and shouldn't) have an effect in that case.
ld64 doesn't warn on this, but it seems like a good thing to do.
If it causes problems in practice for some reason, we can revert it.
Also add a dedicated test for install_name.
Differential Revision: https://reviews.llvm.org/D98259
lld doesn't read MH_DEAD_STRIPPABLE_DYLIB to strip dead dylibs yet,
but now it can produce dylibs with it set.
While here, also switch an existing test that looks only at the main Mach-O
header from --all-headers to --private-header.
Differential Revision: https://reviews.llvm.org/D98262
A `local:` version node in a version script can change the effective symbol binding
to STB_LOCAL. The linker needs to communicate the fact to enable WPD
(otherwise LTO does not know that the `!vcall_visibility` metadata has
effectively changed from VCallVisibilityPublic to VCallVisibilityLinkageUnit).
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D98220
Implement command-line options to alter a dylib's exported-symbols list:
* `-exported_symbol*` options override the default export list. The export list is compiled according to the command-line option(s) only.
* `-unexported_symbol*` options hide otherwise public symbols.
* `-*exported_symbol PATTERN` options specify a single literal or glob pattern.
* `-*exported_symbols_list FILE` options specify a file containing a series of lines containing symbol literals or glob patterns. Whitespace and `#`-prefix comments are stripped.
Note: This is a simple implementation of the primary use case. ld64 has much more complexity surrounding interactions with other options, many of which are obscure and undocumented. We will start simple and complexity as necessary.
Differential Revision: https://reviews.llvm.org/D98223
Add first bits for emitting LC_FUNCTION_STARTS.
This is a recommit of f344dfeb with the adjusted test
which should address build bots breakages.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D97260
This `R_WASM_MEMORY_ADDR_SELFREL_I32` relocation represents an offset
between its relocating address and the symbol address. It's very similar
to `R_X86_64_PC32` but restricted to be used for only data segments.
```
S + A - P
```
A: Represents the addend used to compute the value of the relocatable
field.
P: Represents the place of the storage unit being relocated.
S: Represents the value of the symbol whose index resides in the
relocation entry.
Proposal: https://github.com/WebAssembly/tool-conventions/issues/162
Differential Revision: https://reviews.llvm.org/D96659
This changes the target data layout to make stack align to 16 bytes
on Power10. Before this change, stack was being aligned to 32 bytes.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D96265
clang appears to emit symbols in `__debug_aranges`, at least
for arm64... in the examples I've seen, it doesn't seem like those
symbols are referenced outside of `__DWARF`, so I think they're safe to
ignore. But hopefully @clayborg can confirm.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D98073
With this, llvm-tblgen no longer tries and fails to allocate 7953 petabyte
when it runs during the build. Instead, `check-llvm` with lld/mac as host
linker now completes without any failures on an m1 mac.
This vector op handling code matches what happens in:
- ld64's OutputFile::applyFixUps() in OutputFile.cpp for kindStoreARM64PageOff12
- lld.ld64.darwinold's offset12KindFromInstruction() in
lld/lib/ReaderWriter/MachO/ArchHandler_arm64.cpp for offset12scale16
- RuntimeDyld's decodeAddend() in
llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h for
ARM64_RELOC_PAGEOFF12
Fixes PR49444.
Differential Revision: https://reviews.llvm.org/D98053
Previously, lld/mac only ad-hoc codesigned executables on arm64.
Matches ld64 behavior. Part of PR49443. Fixes 14 of 17 failures when running
check-llvm with lld as host linker on an M1 MBP.
Differential Revision: https://reviews.llvm.org/D97994
This patch fixes LLD to allow element sections for tables whose number
is nonzero. We also add a test for linking multiple tables, showing
that nonzero table numbers for the indirect function table,
user-declared imported tables, and local user table definitions work.
Differential Revision: https://reviews.llvm.org/D92321
Since multiple dylibs can be defined in one TBD, this is
necessary to avoid confusion.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D97905
Previously, we were loading re-exports without checking whether
they were compatible with our target. Prior to {D97209}, it meant that
we were defining dylib symbols that were invalid -- usually a silent
failure unless our binary actually used them. D97209 exposed this as an
explicit error.
Along the way, I've extended our TAPI compatibility check to cover the
platform as well, instead of just checking the arch. To this end, I've
replaced MachO::Architecture with MachO::Target in our Config struct.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D97867
The reexport-nested-libs test added in D97438 was a bit wonky.
First, it was linking against libReexportSystem.tbd which targets the
iOS simulator, and which in turn attempted to re-export the iOS
simulator's libSystem. However, due to the way `-syslibroot` works, it
was actually re-exporting the macOS libSystem.
As a result, the test was not actually able to resolve the symbols in
the desired libSystem. I'm guessing that @oontvoo was confused by this
and therefore included those symbols in libReexportSystem.tbd itself.
But this means that the test wasn't actually testing the resolution of
re-exported symbols (though it did at least verify that the re-exported
libraries could be located).
After some consideration, I figured that stub-link.s could be extended
to cover what reexport-nested-libs.s was attempting to do. The test
targets macOS, so we only have one `-syslibroot` and no chance of
confusion.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D97866
Suppose we are linking against libFoo, which re-exports the
implicitly-bound libSystem, which in turn re-exports some
non-explicitly-bound library like `/usr/lib/system/libsystem_c.dylib`.
Then any bindings we have to a symbol in libsystem_c should use
libSystem (and not libFoo) as the umbrella library.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97865
Implemented the option to omit Power10 instructions from save stubs via the
option --no-power10-stubs or --power10-stubs=no on lld. --power10-stubs= will
override the other option. --power10-stubs=auto also exists to use the default
behaviour (ie allow Power10 instructions in stubs).
Differential Revision: https://reviews.llvm.org/D94627
llvm-objdump only uses one MCInstrAnalysis object, so if ARM and Thumb
code is mixed in one object, or if an object is disassembled without
explicitly setting the triple to match the ISA used, then branch and
call targets will be printed incorrectly.
This could be fixed by creating two MCInstrAnalysis objects in
llvm-objdump, like we currently do for SubtargetInfo. However, I don't
think there's any reason we need two separate sub-classes of
MCInstrAnalysis, so instead these can be merged into one, and the ISA
determined by checking the opcode of the instruction.
Differential revision: https://reviews.llvm.org/D97766
We previously defaulted to x86_64 and an unknown platform, which was fine when
we only supported one arch and did no platform checks, but that will no longer
be true going ahead. Therefore, we should require those flags to be specified
whenever the linker is invoked.
Note that LLD-ELF and ld64 both infer the arch from their input object files,
but the usefulness of that is questionable since clang will always specify these
flags, and most of the time `lld` will be invoked via clang.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D97799
This reverts diff D97610 (commit 0223ab035c) and adds a one-line fix to verify that a `MemoryBufferRef` has sufficient length before reading a 4-byte magic number.
Differential Revision: https://reviews.llvm.org/D97757
Currently, it was delibrately impleneted to not handle this case, but as it has turnt out, we need this feature.
The concrete use case is
`System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa` reexports
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit , which then rexports
/System/Library/PrivateFrameworks/UIFoundation.framework/Versions/A/UIFoundation
The current implemention uses a global currentTopLevelTapi, which is not reset until it finishes loading the whole tree.
This is a problem because if the top-level is set to Cocoa, then when we get to UIFoundation, it will try to find UIFoundation in the current top level, which is Cocoa and will not find it.
The right thing should be:
- When loading a library from a TBD file, re-exports need to be looked up in the auxiliary documents within the same TBD.
- When loading from an actual dylib, no additional TBD documents need to be examined.
- In no case does a re-export mentioned in one TBD file need to be looked up in a document in an auxiliary document from a different TBD file
Differential Revision: https://reviews.llvm.org/D97438
In AArch32 ARM, the PC reads two instructions ahead of the currently
executiing instruction. This evaluates to 8 in ARM state and 4 in
Thumb state. Branch instructions on AArch32 compensate for this by
subtracting the PC bias from the addend. For a branch to symbol this
will result in an addend of -8 in ARM state and -4 in Thumb state.
The existing ARM Target::inBranchRange function accounted for this
implict addend within the function meaning that if the addend were
to be taken into account by the caller then it would be double
counted. This complicates the interface for all Targets as callers
wanting to account for addends had to account for the ARM PC-bias.
In certain situations such as:
https://github.com/ClangBuiltLinux/linux/issues/1305
the PC-bias compensation code didn't match up. In particular
normalizeExistingThunk() didn't put the PC-bias back in as Arm
thunks did not store the addend.
The simplest fix for the problem is to add the PC bias in
normalizeExistingThunk when restoring the addend. However I think
it is worth refactoring the Arm inBranchRange implementation so
that fewer calls to getPCBias are needed for other Targets. I
wasn't able to remove getPCBias completely but hopefully the
Relocations.cpp code is simpler now.
In principle a test could be written to replicate the linux kernel
build failure but I wasn't able to reproduce with a small example
that I could build up from scratch.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1305
Differential Revision: https://reviews.llvm.org/D97550
This adds support for `-undefined dynamic_lookup`, and for
`-undefined warning` and `-undefined suppress` with `-flat_namespace`.
We just replace undefined symbols with a DynamicLookup when we hit them.
With this, `check-llvm` passes when using ld64.lld.darwinnew as host linker.
Differential Revision: https://reviews.llvm.org/D97642
-flat_namespace makes lld emit binaries that use name lookup that's more in
line with other POSIX systems: Instead of looking up symbols as (dylib,name)
pairs by dyld, they're instead looked up just by name.
-flat_namespace has three effects:
1. MH_TWOLEVEL and MH_NNOUNDEFS are no longer set in the Mach-O header
2. All symbols use BIND_SPECIAL_DYLIB_FLAT_LOOKUP as ordinal
3. When a dylib is added to the link, its dependent dylibs are also added,
so that lld can verify that no undefined symbols remain at the end of
a link with -flat_namespace. These transitive dylibs are added for symbol
resolution, but they are not emitted in LC_LOAD_COMMANDs.
-undefined with -flat_namespace still isn't implemented. Before this change,
it was impossible to hit that combination because -flat_namespace caused a
diagnostic. Now that it no longer does, emit a dedicated temporary diagnostic
when both flags are used.
Differential Revision: https://reviews.llvm.org/D97641
For -flat_namespace, lld needs to load dylibs in LC_LOAD_DYLIB.
The current setup meant that libSystem.dylib would cause a LC_LOAD_DYLIB
with libSystem.B.dylib, but that didn't exist in our libsysroot for
tests. So just drop the .B.
See https://reviews.llvm.org/D97641#2595237 and
https://reviews.llvm.org/D97641#2595270
The new Darwin backend for LLD is now able to link reasonably large
real-world programs on x86_64. For instance, we have achieved
self-hosting for the X86_64 target, where all LLD tests pass when
building lld with itself on macOS. As such, we would like to make it the
default back-end.
The new port is now named `ld64.lld`, and the old port remains
accessible as `ld64.lld.darwinold`
This [annoucement email][1] has some context. (But note that, unlike
what the email says, we are no longer doing this as part of the LLVM 12
branch cut -- instead we will go into LLVM 13.)
Numerous mechanical test changes were required to make this change; in
the interest of creating something that's reviewable on Phabricator,
I've split out the boring changes into a separate diff (D95905). I plan to
merge its contents with those in this diff before landing.
(@gkm made the original draft of this diff, and he has agreed to let me
take over.)
[1]: https://lists.llvm.org/pipermail/llvm-dev/2021-January/147665.html
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D95204
If the reference-types feature is enabled, call_indirect will explicitly
reference its corresponding function table via TABLE_NUMBER
relocations against a table symbol.
Also, as before, address-taken functions can also cause the function
table to be created, only with reference-types they additionally cause a
symbol table entry to be emitted.
Differential Revision: https://reviews.llvm.org/D90948
Also a couple of minor cleanups in merge-string.s:
- fix inconsistent use of tabs
- use `.p2align` rather than `.align` since `.p2align` works the
same on all platforms (the meaning of align seems to differ
between platforms according to `AlignmentIsInBytes`.
I noticed these potential cleanups while porting SHF_STRINGS support to
wasm-ld.
Differential Revision: https://reviews.llvm.org/D97647
Bifurcate the `readFile()` API into ...
* `readRawFile()` which performs no checks, and
* `readLinkableFile()` which enforces minimum length of 20 bytes, same as ld64
There are no new tests because tweaks to existing tests are sufficient.
Differential Revision: https://reviews.llvm.org/D97610
On arm64, UNSIGNED relocs are the only ones that use embedded addends
instead of the ADDEND relocation.
Also ensure that the addend works when UNSIGNED is part of a SUBTRACTOR
pair.
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D97105
Also add a few asserts to verify that we are indeed handling an
UNSIGNED relocation as the minued. I haven't made it an actual
user-facing error since I don't think llvm-mc is capable of generating
SUBTRACTOR relocations without an associated UNSIGNED.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97103
`llvm-mc` doesn't generate any relocations for subtractions
between local symbols -- they must be global -- so the previous test
wasn't actually testing any relocation logic. I've fixed that and
extended the test to cover r_length=3 relocations as well as both x86_64
and arm64.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97057
Dynamic lookup symbols are symbols that work like dynamic symbols
in ELF: They're not bound to a dylib like normal Mach-O twolevel lookup
symbols, but they live in a global pool and dyld resolves them against
exported symbols from all loaded dylibs.
This adds support for dynamical lookup symbols to lld/mac. They are
represented as DylibSymbols with file set to nullptr.
This also uses this support to implement the -U flag, which makes
a specific symbol that's undefined at the end of the link a
dynamic lookup symbol.
For -U, it'd be sufficient to just to a pass over remaining undefined symbols
at the end of the link and to replace them with dynamic lookup symbols then.
But I'd like to use this code to implement flat_namespace too, and that will
require real support for resolving dynamic lookup symbols in SymbolTable. So
this patch adds this now already.
While writing tests for this, I noticed that we didn't set N_WEAK_DEF in the
symbol table for DylibSymbols, so this fixes that too.
Differential Revision: https://reviews.llvm.org/D97521
For one metadata section usage, each text section references a metadata section.
The metadata sections have a C identifier name to allow the runtime to collect them via `__start_/__stop_` symbols.
Since `__start_`/`__stop_` references are always present from live sections, the
C identifier name sections appear like GC roots, which means they cannot be
discarded by `ld --gc-sections`.
To make such sections GCable, either SHF_LINK_ORDER or a section group is needed.
SHF_LINK_ORDER is not suitable for the references can be inlined into other functions
(See D97430:
Function A (in the section .text.A) references its `__sancov_guard` section.
Function B inlines A (so now .text.B references `__sancov_guard` - this is invalid with the semantics of SHF_LINK_ORDER).
In the linking stage,
if `.text.A` gets discarded, and `__sancov_guard` is retained via the reference from `.text.B`,
the output will be invalid because `__sancov_guard` references the discarded `.text.A`.
LLD errors "sh_link points to discarded section".
)
A section group have size overhead, and is cumbersome when there is just one metadata section.
Add `-z start-stop-gc` to drop the "__start_/__stop_ references retain
non-SHF_LINK_ORDER non-SHF_GROUP C identifier name sections" rule.
We reserve the rights to switch the default in the future.
Reviewed By: phosek, jrtc27
Differential Revision: https://reviews.llvm.org/D96914
When parsing bitcode, convert LTO Symbols to LLD Symbols in order to perform
resolution. The "winning" symbol will then be marked as Prevailing at LTO
compilation time. This is similar to what the other LLD ports do.
This change allows us to handle `linkonce` symbols correctly, and to deal with
duplicate bitcode symbols gracefully. Previously, both scenarios would result in
an assertion failure inside the LTO code, complaining that multiple Prevailing
definitions are not allowed.
While at it, I also added basic logic around visibility. We don't do anything
useful with it yet, but we do check that its value is valid. LLD-ELF appears to
use it only to set FinalDefinitionInLinkageUnit for LTO, which I think is just a
performance optimization.
From my local experimentation, the linker itself doesn't seem to do anything
differently when encountering linkonce / linkonce_odr / weak / weak_odr. So I've
only written a test for one of them. LLD-ELF has more, but they seem to mostly
be testing the intermediate bitcode output of their LTO backend...? I'm far from
an expert here though, so I might very well be missing things.
Reviewed By: #lld-macho, MaskRay, smeenai
Differential Revision: https://reviews.llvm.org/D94342
Remove a stray -lib argument in guardcf-lto.ll; llvm-lib doesn't
support generating import libs from a def file unlike lib.exe.
Previously this worked because the -lib argument was ignored
(printing only a warning).
Differential Revision: https://reviews.llvm.org/D96699
{D95809} introduced a mechanism for synthetic symbol creation of personality
pointers. When multiple section relocations referred to the same personality
pointer, it would deduplicate them. However, it neglected to consider that we
could have symbol relocations that also refer to the same personality pointer.
This diff fixes it.
In practice, this mix of relocations arises when there is a statically-linked
personality routine that is referenced from multiple object files. Within the
same object file, it will be referred to via section relocations, but
(obviously) other object files will refer to it via symbol relocations. Failing
to deduplicate these references resulted in us going over the
3-personality-pointer limit when linking some larger applications.
Fixes llvm.org/PR48389.
Reviewed By: #lld-macho, thakis, alexshap
Differential Revision: https://reviews.llvm.org/D97245
The silent failures had confused me a few times.
I haven't added a similar check for platform yet as we don't yet have logic to
infer the platform automatically, and so adding that check would require
updating dozens of test files.
Reviewed By: #lld-macho, thakis, alexshap
Differential Revision: https://reviews.llvm.org/D97209
I've adjusted the RelocAttrBits to better fit the semantics of
the relocations. In particular:
1. *_UNSIGNED relocations are no longer marked with the `TLV` bit, even
though they can occur within TLV sections. Instead the `TLV` bit is
reserved for relocations that can reference thread-local symbols, and
*_UNSIGNED relocations have their own `UNSIGNED` bit. The previous
implementation caused TLV and regular UNSIGNED semantics to be
conflated, resulting in rebase opcodes being incorrectly emitted for TLV
relocations.
2. I've added a new `POINTER` bit to denote non-relaxable GOT
relocations. This distinction isn't important on x86 -- the GOT
relocations there are either relaxable or non-relaxable loads -- but
arm64 has `GOT_LOAD_PAGE21` which loads the page that the referent
symbol is in (regardless of whether the symbol ends up in the GOT). This
relocation must reference a GOT symbol (so must have the `GOT` bit set)
but isn't itself relaxable (so must not have the `LOAD` bit). The
`POINTER` bit is used for relocations that *must* reference a GOT
slot.
3. A similar situation occurs for TLV relocations.
4. ld64 supports both a pcrel and an absolute version of
ARM64_RELOC_POINTER_TO_GOT. But the semantics of the absolute version
are pretty weird -- it results in the value of the GOT slot being
written, rather than the address. (That means a reference to a
dynamically-bound slot will result in zeroes being written.) The
programs I've tried linking don't use this form of the relocation, so
I've dropped our partial support for it by removing the relevant
RelocAttrBits.
Reviewed By: alexshap
Differential Revision: https://reviews.llvm.org/D97031
/reproduce: now works correctly with:
- /call-graph-ordering-file:
- /def:
- /natvis:
- /order:
- /pdbstream:
I went through all instances of MemoryBuffer::getFile() and made sure
everything that didn't already do so called takeBuffer().
For natvis, that wasn't possible since DebugInfo/PDB wants to take
owernship of the natvis buffer. For that case, I'm manually adding the
tar file entry.
/natvis: and /pdbstream: is slightly awkward, since createResponseFile()
always adds these flags to the response file but createPDB() (which
ultimately adds the files referenced by the flags) is only called if
/debug is also passed. So when using /natvis: without /debug with
/reproduce:, lld won't warn, but when linking using the response
file from the archive, it won't find the natvis file since it's not
in the tar. This isn't a new issue though, and after this patch things
at least work with using /natvis: _with_ debug with /reproduce:.
(Same for /pdbstream:)
Differential Revison: https://reviews.llvm.org/D97212
If the reference-types feature is enabled, call_indirect will explicitly
reference its corresponding function table via `TABLE_NUMBER`
relocations against a table symbol.
Also, as before, address-taken functions can also cause the function
table to be created, only with reference-types they additionally cause a
symbol table entry to be emitted.
We abuse the used-in-reloc flag on symbols to indicate which tables
should end up in the symbol table. We do this because unfortunately
older wasm-ld will carp if it see a table symbol.
Differential Revision: https://reviews.llvm.org/D90948
The special root semantics for identifier-named sections is meant
specifically for the metadata sections. In the context of group
semantics, where group members are always retained or discarded as a
unit, it's natural not to have this semantics apply to a section in a
group, otherwise we would never discard the group defeating the purpose
of using the group in the first place.
This change modifies the GC behavior so that __start_/__stop_ references
don't retain C identifier named sections in section groups which allows
for these groups to be collected. This matches the behavior of BFD ld.
The only kind of existing case that might break is interdependent
metadata sections that are all in a group together, but that group
doesn't contain any other sections referenced by anything except
implicit inclusion in a `__start_` and/or `__stop_`-referenced
identifier-named section, but such cases should be unlikely.
Differential Revision: https://reviews.llvm.org/D96753
See discussion on https://reviews.llvm.org/D93263
-flat_namespace isn't implemented yet, and neither is -undefined dynamic,
so this makes -undefined pretty pointless in lld/MachO for now. But once
we implement -flat_namespace (which we need to do anyways to get check-llvm
to pass with lld as host linker), the code's already there.
Follow-up to https://reviews.llvm.org/D93263#2491865
Differential Revision: https://reviews.llvm.org/D96963
Differential Revision: https://reviews.llvm.org/D95913
Usage: -bundle_loader <executable>
This option specifies the executable that will load the build output file being linked.
When building a bundle, users can use the --bundle_loader to specify an executable
that contains symbols referenced, but not implemented in the bundle.
For relocatable output that needs the indirect function table, identify
the well-known function table. This allows us to properly fix the
limits on the imported table, and in a followup will allow the element
section to reference the indirect function table even if it's not
assigned to table number 0. Adapt tests for import reordering.
Differential Revision: https://reviews.llvm.org/D96770
Before, --importTable forced the creation of an indirect function table,
whether it was needed or not. Now it only imports a table if needed.
Differential Revision: https://reviews.llvm.org/D96872
ST_Data is used to model BFD `BFD_OBJECT`.
A STT_TLS symbol does not have the `BFD_OBJECT` flag in BFD.
This makes sense because a STT_TLS symbol is like in a different address space,
normal data/object properties do not apply on them.
With this change, a STT_TLS symbol will not be displayed as 'O'.
This new behavior matches objdump.
Differential Revision: https://reviews.llvm.org/D96735
Adds a lld test for a case that the handling added for dynamically
exported symbols in 1487747e99 already
fixes. Because isExportDynamic returns true when the symbol is
SharedKind with default visibility, it will treat as dynamically
exported and block devirtualization when the definition of a vtable
comes from a shared library. This is desireable as it is dangerous to
devirtualize in that case, since there could be hidden overrides in the
shared library. Typically that happens when the shared library header
contains available externally definitions, which applications can
override. An example is std::error_category, which is overridden in LLVM
and causing failures after a self build with WPD enabled, because
libstdc++ contains hidden overrides of the virtual base class methods.
The regular LTO case in the new test already worked, but there are
2 fixes in this patch needed for the index-only case and the hybrid
LTO case. For the index-only case, WPD should not simply ignore
available externally vtables. A follow on fix will be made to clang to
emit type metadata for those vtables, which the new test is modeling.
For the hybrid case, we need to ensure when the module is split that any
llvm.*used globals are cloned to the regular LTO split module so
available externally vtable definitions are not prematurely deleted.
Another follow on fix will add the equivalent gold test, which requires
a small fix to the plugin to treat symbols in dynamic libraries the same
way lld already is.
Differential Revision: https://reviews.llvm.org/D96721
This change introduces support for zero flag ELF section groups to lld.
lld already supports COMDAT sections, which in ELF are a special type of
ELF section groups. These are generally useful to enable linker GC where
you want a group of sections to always travel together, that is to be
either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF linkers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D96636
As we don't sort local symbols, don't sort non-local symbols. This makes
non-local symbols appear in their register order, which matches GNU as. The
register order is nice in that you can write tests with interleaved CHECK
prefixes, e.g.
```
// CHECK: something about foo
.globl foo
foo:
// CHECK: something about bar
.globl bar
bar:
```
With the lexicographical order, the user needs to place lexicographical smallest
symbol first or keep CHECK prefixes in one place.
MVP object files may import at most one table, and if they do, it must
be assigned table number zero in the output, as the references to that
table are not relocatable. Ensure that this is the case, even if some
inputs define other tables.
Differential Revision: https://reviews.llvm.org/D96001
This reverts commit ac2be2b6a3.
This causes a whole much of emscripten tests to fail due to newly
undefined symbols appearing. Will investigate and look into re-landing
later.
This fixes two somewhat related issues. Firstly we were never
generating imports for weak functions (even with the `import-functions`
policy for undefined symbols). Adding a direct call to foo in the
`weak-undefined-pic.s` exposed a crash in the linker which this
change fixes.
Secondly we were failing to call `handleWeakUndefines` for the `-pie`
case which is PIC but doesn't set the undefined symbol policy to
`import-functions`. With this change `-pie` binaries will by default
call `handleWeakUndefines` which generates the undefined stub handlers
for any weakly undefined symbols.
Fixes: https://github.com/emscripten-core/emscripten/issues/13337
Differential Revision: https://reviews.llvm.org/D95914
With dynamic linking we have the current limitation that there can be
only a single active data segment (since we use __memory_base as the
load address and we can't do arithmetic in constant expresions).
This change delays the merging of active segments until a little later
in the linking process which means that the grouping of data by section,
and the magic __start/__end symbols work as expected under dynamic
linking.
Differential Revision: https://reviews.llvm.org/D96453
When parsing an object file, LLD interleaves undefined symbol resolution (which
may recursively fetch other lazy objects) with defined symbol resolution.
This may lead to surprising results, e.g. if an object file defines currently
undefined symbols and references another lazy symbol, we may interleave defined
symbols with the lazy fetch, potentially leading to the defined symbols
resolving to different files.
As an example, if both `a.a(a.o)` and `a.a(b.o)` define `foo` (not in COMDAT
group, or in different COMDAT groups) and `__profd_foo` (in COMDAT group
`__profd_foo`). LLD may resolve `foo` to `a.a(a.o)` and `__profd_foo` to
`b.a(b.o)`, i.e. different files.
```
parse ArchiveFile a.a
entry fetches a.a(a.o)
parse ObjectFile a.o
define entry
define foo
reference b
b fetches a.a(b.o)
parse ObjectFile b.o
define prevailing __profd_foo
define (ignored) non-prevailing __profd_foo
```
Assuming a set of interconnected symbols are defined all or none in several lazy
objects. Arguably making them resolve to the same file is preferable than making
them resolve to different files (some are lazy objects).
The main argument favoring the new behavior is the stability. The relative order
between a defined symbol and an undefined symbol does not change the symbol
resolution behavior. Only the relative order between two undefined symbols can
affect fetching behaviors.
---
The real world case is reduced from a Fuchsia PGO usage: `a.a(a.o)` has a
constructor within COMDAT group C5 while `a.a(b.o)` has a constructor within
COMDAT group C2. Because they use different group signatures, they are not
de-duplicated. It is not entirely whether Clang behavior is entirely conforming.
LLD selects the PGO counter section (`__profd_*`) from `a.a(b.o)` and the
constructor section from `a.a(a.o)`. The `__profd_*` is a SHF_LINK_ORDER section
linking to its own non-prevailing constructor section, so LLD errors
`sh_link points to discarded section`. This patch fixes the error.
Differential Revision: https://reviews.llvm.org/D95985
Multi-configuration generators (such as Visual Studio and Xcode) allow the specification of a build flavor at build time instead of config time, so the lit configuration files need to support that - and they do for the most part. There are several places that had one of two issues (or both!):
1) Paths had %(build_mode)s set up, but then not configured, resulting in values that would not work correctly e.g. D:/llvm-build/%(build_mode)s/bin/dsymutil.exe
2) Paths did not have %(build_mode)s set up, but instead contained $(Configuration) (which is the value for Visual Studio at configuration time, for Xcode they would have had the equivalent) e.g. "D:/llvm-build/$(Configuration)/lib".
This seems to indicate that we still have a lot of fragility in the configurations, but also that a number of these paths are never used (at least on Windows) since the errors appear to have been there a while.
This patch fixes the configurations and it has been tested with Ninja and Visual Studio to generate the correct paths. We should consider removing some of these settings altogether.
Reviewed By: JDevlieghere, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96427
The code previously assumed that `getChunk` would return a non-null pointer for
every symbol, but in fact it only returns non-null pointers for DefinedFunction
and DefinedData symbols. This patch fixes the segfault by checking whether
`getChunk` returns a null for each symbol and skipping the mapping output for
any symbols for which it does.
Differential Revision: https://reviews.llvm.org/D88369
This moves the error checking until after all optional
symbols (including the section start/end symbols) have
been created.
Differential Revision: https://reviews.llvm.org/D96318
Since we emit diagnostics for undefineds in Writer::scanRelocations()
and symbols referenced by -u flags aren't referenced by any relocations,
this needs some manual code (similar to the entry point).
Differential Revision: https://reviews.llvm.org/D94371
`extern const bfd_target aarch64_elf64_le_vec;` is a variable in BFD.
It was somehow misused as an emulation by Android.
```
% aarch64-linux-gnu-ld -m aarch64_elf64_le_vec a.o
aarch64-linux-gnu-ld: unrecognised emulation mode: aarch64_elf64_le_vec
Supported emulations: aarch64linux aarch64elf aarch64elf32 aarch64elf32b aarch64elfb armelf armelfb aarch64linuxb aarch64linux32 aarch64linux32b armelfb_linux_eabi armelf_linux_eabi
```
Acked by Stephen Hines, who removed the flag from Android a while back.
Rewritting the path of the sample profile file in response.txt to be relative to the repro tar.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96193
This is an initial base commit for ARM64 target arch support. I don't represent that it complete or bug-free, but wish to put it out for review now that some basic things like branch target & load/store address relocs are working.
I can add more tests to this base commit, or add them in follow-up commits.
It is not entirely clear whether I use the "ARM64" (Apple) or "AArch64" (non-Apple) naming convention. Guidance is appreciated.
Differential Revision: https://reviews.llvm.org/D88629
The LSDA pointers are encoded as offsets from the image base,
and arranged in one big contiguous array. Each second-level page records
the offset within that LSDA array which corresponds to the LSDA for its
first CU entry.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D95810
Note that there is a triple indirection involved with
personalities and compact unwind:
1. Two bits of each CU encoding are used as an offset into the
personality array.
2. Each entry of the personality array is an offset from the image base.
The resulting address (after adding the image base) should point within the
GOT.
3. The corresponding GOT entry contains the actual pointer to the
personality function.
To further complicate things, when the personality function is in the
object file (as opposed to a dylib), its references in
`__compact_unwind` may refer to it via a section + offset relocation
instead of a symbol relocation. Since our GOT implementation can only
create entries for symbols, we have to create a synthetic symbol at the
given section offset.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D95809
GNU as does not sort local symbols. This has several advantages:
* The .symtab order is roughly the symbol occurrence order.
* The closest preceding STT_SECTION symbol is the definition of a local symbol.
* The closest preceding STT_FILE symbol is the defining file of a local symbol, if there are multiple default-version .file directives. (Not implemented in MC.)
A SHF_LINK_ORDER .gcc_except_table is similar to a .gcc_except_table in
a section group. The associated text section is responsible for retaining it.
LLD still does not support GC of non-group non-SHF_LINK_ORDER .gcc_except_table -
but that is not necessary because we can teach the compiler to set SHF_LINK_ORDER.
The Mach kernel & codesign on arm64 macOS has strict requirements for alignment and sequence of segments and sections. Dyld probably is just as picky, though kernel & codesign reject malformed Mach-O files before dyld ever has a chance.
I developed this diff by incrementally changing alignments & sequences to match the output of ld64. I stopped when my hello-world test program started working: `codesign --verify` succeded, and `execve(2)` didn't immediately fail with `errno == EBADMACHO` = `"Malformed Mach-O file"`.
Differential Revision: https://reviews.llvm.org/D94935
The current diagnostic has confused users. The new wording is adapted from one suggested by Ian Lance Taylor.
Differential Revision: https://reviews.llvm.org/D95917
binutils 2.36 introduced the new section flag SHF_GNU_RETAIN (for ELFOSABI_GNU &
ELFOSABI_FREEBSD) to mark a sections as a GC root. Several LLVM side toolchain
folks (including me) were involved in the design process of SHF_GNU_RETAIN and
were happy with this proposal.
Currently GNU ld only respects SHF_GNU_RETAIN semantics for ELFOSABI_GNU &
ELFOSABI_FREEBSD object files
(https://sourceware.org/bugzilla/show_bug.cgi?id=27282). GNU ld sets EI_OSABI
to ELFOSABI_GNU for relocatable output
(https://sourceware.org/bugzilla/show_bug.cgi?id=27091). In practice the single
value EI_OSABI is neither a good indicator for object file compatibility, nor a
useful mechanism marking used ELF extensions.
For input, we respect SHF_GNU_RETAIN semantics even for ELFOSABI_NONE object
files. This is compatible with how LLD and GNU ld handle (mildly useful) STT_GNU_IFUNC
/ (emitted by GCC, considered misfeature by some folks) STB_GNU_UNIQUE input.
(As of LLVM 12.0.0, the integrated assembler does not set ELFOSABI_GNU for
STT_GNU_IFUNC/STB_GNU_UNIQUE).
Arguably STT_GNU_IFUNC/STB_GNU_UNIQUE probably need indicators in object files
but SHF_GNU_RETAIN is more likely accepted by more OSABI platforms.
For output, we take a step further than GNU ld: we don't promote ELFOSABI_NONE
to ELFOSABI_GNU for all output.
Differential Revision: https://reviews.llvm.org/D95749
In GCC emitted .debug_info sections, R_386_GOTOFF may be used to
relocate DW_AT_GNU_call_site_value values
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98946).
R_386_GOTOFF (`S + A - GOT`) is one of the `isStaticLinkTimeConstant` relocation
type which is not PC-relative, so it can be used from non-SHF_ALLOC sections. We
current allow new relocation types as needs come. The diagnostic has caught some
bugs in the past.
Differential Revision: https://reviews.llvm.org/D95994
This extends {D92539} to work even when we are loading archive
members via `-force_load`. I uncovered this issue while trying to
force-load archives containing bitcode -- we were segfaulting.
In addition to fixing the `-force_load` case, this diff also addresses
the behavior of `-ObjC` when LTO bitcode is involved -- we need to
force-load those archive members if they contain ObjC categories.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95265
This makes our error messages more informative. But the bigger motivation is for
LTO symbol resolution, which will be in an upcoming diff. The changes in this
one are largely mechanical.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D94316
On z/OS, other error messages are not matched correctly in lit tests.
```
EDC5121I Invalid argument.
EDC5111I Permission denied.
```
This patch adds a lit substitution to fix it.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95808
Add per-reloc-type attribute bits and migrate code from per-target file into target independent code, driven by reloc attributes.
Many cleanups
Differential Revision: https://reviews.llvm.org/D95121
The option catches incompatibility between `R_*_IRELATIVE` and DT_TEXTREL/DF_TEXTREL
before glibc 2.29. Newer glibc versions are more common nowadays and I don't
think this option has ever been used. Diagnosing this problem is also
straightforward by reading the stack trace.
On z/OS, the following error message is not matched correctly in lit tests.
```
EDC5129I No such file or directory.
```
This patch uses a lit config substitution to check for platform specific error messages.
Reviewed By: muiez, jhenderson
Differential Revision: https://reviews.llvm.org/D95246
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
A default version (@@) is only available for defined symbols.
Currently we use "@@" for undefined symbols too.
This patch fixes the issue and improves our test case.
Differential revision: https://reviews.llvm.org/D95219
Whilst migrating/retiring some downstream testing, I came across a test
for weak undef IE and LD TLS references, but was unable to find any
equivalent in LLD's upstream testing. There does seem to be some slight
subtle differences that could be worth testing compared to LE TLS
references, in particular that IE can be relaxed to LE in this case,
hence this change.
Differential Revision: https://reviews.llvm.org/D95124
Reviewed by: grimar, MaskRay
Just getting rid of some logspew as I test LLD under existing build
systems.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95213
If foo is referenced in any object file, bitcode file or shared object,
`__wrap_foo` should be retained as the redirection target of sym
(f96ff3c0f8).
If the object file defining foo has foo references, we cannot easily distinguish
the case from cases where foo is not referenced (we haven't scanned
relocations). Retain `__wrap_foo` because we choose to wrap sym references
regardless of whether sym is defined to keep non-LTO/LTO/relocatable links' behaviors similar
https://sourceware.org/bugzilla/show_bug.cgi?id=26358 .
If foo is defined in a shared object, `__wrap_foo` can still be omitted
(`wrap-dynamic-undef.s`).
Reviewed By: andrewng
Differential Revision: https://reviews.llvm.org/D95152
Fixes PR48523. When the linker errors with "output file too large",
one question that comes to mind is how the section sizes differ from
what they were previously. Unfortunately, this information is lost
when the linker exits without writing the output file. This change
makes it so that the error message includes the sizes of the largest
sections.
Reviewed By: MaskRay, grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D94560
This makes the following improvements.
For `SHT_GNU_versym`:
* yaml2obj: set `sh_link` to index of `.dynsym` section automatically.
For `SHT_GNU_verdef`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version definitions.
For `SHT_GNU_verneed`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version dependencies.
Also, simplifies few test cases.
Differential revision: https://reviews.llvm.org/D94956
The relocation offsets were incorrect. I fixed them with llvm-readobj
-codeview -codeview-subsection-bytes, which has a helpful printout of
the relocations that apply to a given symbol record with their offsets.
With this, I was able to update the relocation offsets in the yaml to
fix the line table and the S_DEFRANGE_REGISTER records.
There is still some remaining inconsistency in yaml2obj and obj2yaml
when round tripping MSVC objects, but that isn't a blocker for relanding
D94267.
Run the ObjCARCContractPass during LTO. The legacy LTO backend (under
LTO/ThinLTOCodeGenerator.cpp) already does this; this diff just adds that
behavior to the new LTO backend. Without that pass, the objc.clang.arc.use
intrinsic will get passed to the instruction selector, which doesn't know how to
handle it.
In order to test both the new and old pass managers, I've also added support for
the `--[no-]lto-legacy-pass-manager` flags.
P.S. Not sure if the ordering of the pass within the pipeline matters...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94547
In 8031785f4a the temporary object being built was moved to %t/main.o,
but not all run lines were updated to reflect this. Observe the failure
on this buildbot:
http://lab.llvm.org:8011/#/builders/5/builds/3646/steps/9/logs/stdio
It might pass locally for some people due to a stale %t.o hanging around
the build directory.
```
// a.s
jmp fcntl
// b.s
.globl fcntl
fcntl:
ret
```
`ld.lld -shared --wrap=fcntl a.o b.o` has an `R_X86_64_JUMP_SLOT` referencing
the index 0 undefined symbol, which will cause a glibc `symbol lookup error` at
runtime. This is because `__wrap_fcntl` is not in .dynsym
We use an approximation `!wrap->isUndefined()`, which doesn't set
`isUsedInRegularObj` of `__wrap_fcntl` when `fcntl` is referenced and
`__wrap_fcntl` is undefined.
Fix this by using `sym->referenced`.
This reverts commit 418df4a6ab.
This change broke emscripten tests, I believe because it started
generating 5-byte a wide table index in the call_indirect instruction.
Neither v8 nor wabt seem to be able to handle that. The spec
currently says that this is single 0x0 byte and:
"In future versions of WebAssembly, the zero byte occurring in the
encoding of the call_indirectcall_indirect instruction may be used to
index additional tables."
So we need to revisit this change. For backwards compat I guess
we need to guarantee that __indirect_function_table is always at
address zero. We could also consider making this a single-byte
relocation with and assert if have more than 127 tables (for now).
Differential Revision: https://reviews.llvm.org/D95005
Object files (and the output --relocatable) should never define
__indirect_function_table. It should always be linker synthesized
with the final output executable.
Differential Revision: https://reviews.llvm.org/D94993
R_PPC64_ADDR16_HI represents bits 16-31 of a 32-bit value
R_PPC64_ADDR16_HIGH represents bits 16-31 of a 64-bit value.
In the Linux kernel, `LOAD_REG_IMMEDIATE_SYM` defined in `arch/powerpc/include/asm/ppc_asm.h`
uses @l, @high, @higher, @highest to load the 64-bit value of a symbol.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1260
Such files (Thin-%%%%%%.tmp.o) are supposed to be deleted immediately
after they're used (either by renaming or deletion). However, we've seen
instances on Windows where this doesn't happen, probably due to the
filesystem being flaky. This is effectively a resource leak which has
prevented us from using the ThinLTO cache on Windows.
Since those temporary files are in the thinlto cache directory which we
prune periodically anyway, allowing them to be pruned too seems like a
tidy way to solve the problem.
Differential revision: https://reviews.llvm.org/D94962
This patch changes to make call_indirect explicitly refer to the
corresponding function table, residualizing TABLE_NUMBER relocs against
it.
With this change, wasm-ld now sees all references to tables, and can
link multiple tables.
Differential Revision: https://reviews.llvm.org/D90948
The commit 18aa0be36e changed the default GotBaseSymInGotPlt to true
for AArch64. This is different than binutils, where
_GLOBAL_OFFSET_TABLE_ points at the start or .got.
It seems to not intefere with current relocations used by LLVM. However
as indicated by PR#40357 [1] gcc generates R_AARCH64_LD64_GOTPAGE_LO15
for -pie (in fact it also generated the relocation for -fpic).
This change is requires to correctly handle R_AARCH64_LD64_GOTPAGE_LO15
by lld from objects generated by gcc.
[1] https://bugs.llvm.org/show_bug.cgi?id=40357
This patch adds support to wasm-ld for linking multiple table references
together, in a manner similar to wasm globals. The indirect function
table is synthesized as needed.
To manage the transitional period in which the compiler doesn't yet
produce TABLE_NUMBER relocations and doesn't residualize table symbols,
the linker will detect object files which have table imports or
definitions, but no table symbols. In that case it will synthesize
symbols for the defined and imported tables.
As a change, relocatable objects are now written with table symbols,
which can cause symbol renumbering in some of the tests. If no object
file requires an indirect function table, none will be written to the
file. Note that for legacy ObjFile inputs, this test is conservative: as
we don't have relocs for each use of the indirecy function table, we
just assume that any incoming indirect function table should be
propagated to the output.
Differential Revision: https://reviews.llvm.org/D91870
On z/OS, the following error message is not matched correctly in lit tests. This patch updates the CHECK expression to match successfully.
```
EDC5129I No such file or directory.
```
Reviewed By: muiez
Differential Revision: https://reviews.llvm.org/D94239
This patch adds support to wasm-ld for linking multiple table references
together, in a manner similar to wasm globals. The indirect function
table is synthesized as needed.
To manage the transitional period in which the compiler doesn't yet
produce TABLE_NUMBER relocations and doesn't residualize table symbols,
the linker will detect object files which have table imports or
definitions, but no table symbols. In that case it will synthesize
symbols for the defined and imported tables.
As a change, relocatable objects are now written with table symbols,
which can cause symbol renumbering in some of the tests. If no object
file requires an indirect function table, none will be written to the
file. Note that for legacy ObjFile inputs, this test is conservative: as
we don't have relocs for each use of the indirecy function table, we
just assume that any incoming indirect function table should be
propagated to the output.
Differential Revision: https://reviews.llvm.org/D91870
When running in `-r/--relocatable` we output relocations but the
new TLS relocations type was missing from `ObjFile::calcNewAddend`
causing this combination of inputs/flags to crash the linker.
Also avoid creating tls variables in relocatable mode. These variables
are only needed when linking final executables.
Fixes: https://github.com/emscripten-core/emscripten/issues/12934
Fixes: PR48506
Differential Revision: https://reviews.llvm.org/D93554
Fixes PR48693: --emit-relocs keeps relocation sections. --gdb-index drops
.debug_gnu_pubnames and .debug_gnu_pubtypes but not their relocation sections.
This can cause a null pointer dereference in `getOutputSectionName`.
Also delete debug-gnu-pubnames.s which is covered by gdb-index.s
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D94354
Fixes PR48681: after LTO, lto.tmp may reference a libcall symbol not in an IR
symbol table of any bitcode file. If such a symbol is defined in an archive
matched by a --exclude-libs, we don't correctly localize the symbol.
Add another `excludeLibs` after `compileBitcodeFiles` to localize such libcall
symbols. Unfortunately we have keep the existing one for D43126.
Using VER_NDX_LOCAL is an implementation detail of `--exclude-libs`, it does not
necessarily tie to the "localize" behavior. `local:` patterns in a version
script can be omitted.
The `symbol ... has undefined version ...` error should not be exempted.
Ideally we should error as GNU ld does. https://issuetracker.google.com/issues/73020933
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D94280
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
We were mishandling the case where both `__tbss` and `__thread_data` sections were
present.
TLVP relocations should be encoded as offsets from the start of `__thread_data`,
even if the symbol is actually located in `__thread_bss`. Previously, we were
writing the offset from the start of the containing section, which doesn't
really make sense since there's no way `tlv_get_addr()` can know which section a
given `tlv$init` symbol is in at runtime.
In addition, this patch ensures that we place `__thread_data` immediately before
`__thread_bss`. This is what ld64 does, likely for performance reasons. Zerofill
sections must also be at the end of their segments; we were already doing this,
but now we ensure that `__thread_bss` occurs before `__bss`, so that it's always
possible to have it contiguous with `__thread_data`.
Fixes llvm.org/PR48657.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D94329
Before this patch, when using LLD with /DEBUG:GHASH and MSVC precomp.OBJ files, we had a bunch of:
lld-link: warning: S_[GL]PROC32ID record in blabla.obj refers to PDB item index 0x206ED1 which is not a LF[M]FUNC_ID record
This was caused by LF_FUNC_ID and LF_MFUNC_ID which didn't have correct mapping to the corresponding TPI records. The root issue was that the indexMapStorage was improperly re-assembled in UsePrecompSource::remapTpiWithGHashes.
After this patch, /DEBUG and /DEBUG:GHASH produce exactly the same debug infos in the PDB.
Differential Revision: https://reviews.llvm.org/D93732
A struct in C passed by value did not get debug information. Such values are currently
lowered to a Wasm local even in -O0 (not to an alloca like on other archs), which becomes
a Target Index operand (TI_LOCAL). The DWARF writing code was not emitting locations
in for TI's specifically if the location is a single range (not a list).
In addition, the ExplicitLocals pass which removes the ARGUMENT pseudo instructions did
not update the associated DBG_VALUEs, and couldn't even find these values since the code
assumed such instructions are adjacent, which is not the case here.
Also fixed asm printing of TIs needed by a test.
Differential Revision: https://reviews.llvm.org/D94140
This character indicates that when return pointer authentication is
being used, the function signs the return address using the B key.
Differential Revision: https://reviews.llvm.org/D93954
Add support for linking powerpcle code in LLD.
Rewrite lld/test/ELF/emulation-ppc.s to use a shared check block and add powerpcle tests.
Update tests.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93917
D93491 implemented `--version` for the MachO LLD port, but asserts that the string contains something like "LLD N.N". However, this is just the cmake default for `LLD_VERSION_STRING`, and downstream users may choose a different value, e.g. a rolling distro may print "LLD trunk".
Every basic block section symbol created by -fbasic-block-sections will contain
".__part." to know that this symbol corresponds to a basic block fragment of
the function.
This patch solves two problems:
a) Like D89617, we want function symbols with suffixes to be properly qualified
so that external tools like profile aggregators know exactly what this
symbol corresponds to.
b) The current basic block naming just adds a ".N" to the symbol name where N is
some integer. This collides with how clang creates __cxx_global_var_init.N.
clang creates these symbol names to call constructor functions and basic
block symbol naming should not use the same style.
Fixed all the test cases and added an extra test for __cxx_global_var_init
breakage.
Differential Revision: https://reviews.llvm.org/D93082
We didn't have support for parsing DriverKit in our `-platform`
flag, so add that too. Also remove a bunch of unnecessary namespace
prefixes.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93741
It's an extension to ld64, but all the other ports have it, and
someone asked for it in PR43721.
While here, change the COFF help text to match the other ports.
Differential Revision: https://reviews.llvm.org/D93491
Before this, a hello world program would contain many many unnecessary
entries in its string table.
No behavior change, just makes the string table in the output smaller
and more like ld64's.
Differential Revision: https://reviews.llvm.org/D93711
Private extern symbols are used for things scoped to the linkage unit.
They cause duplicate symbol errors (so they're in the symbol table,
unlike TU-scoped truly local symbols), but they don't make it into the
export trie. They are created e.g. by compiling with
-fvisibility=hidden.
If two weak symbols have differing privateness, the combined symbol is
non-private external. (Example: inline functions and some TUs that
include the header defining it were built with
-fvisibility-inlines-hidden and some weren't).
A weak private external symbol implicitly has its "weak" dropped and
behaves like a regular strong private external symbol: Weak is an export
trie concept, and private symbols are not in the export trie.
If a weak and a strong symbol have different privateness, the strong
symbol wins.
If two common symbols have differing privateness, the larger symbol
wins. If they have the same size, the privateness of the symbol seen
later during the link wins (!) -- this is a bit lame, but it matches
ld64 and this behavior takes 2 lines less to implement than the less
surprising "result is non-private external), so match ld64.
(Example: `int a` in two .c files, both built with -fcommon,
one built with -fvisibility=hidden and one without.)
This also makes `__dyld_private` a true TU-local symbol, matching ld64.
To make this work, make the `const char*` StringRefZ ctor to correctly
set `size` (without this, writing the string table crashed when calling
getName() on the __dyld_private symbol).
Mention in CommonSymbol's comment that common symbols are now disabled
by default in clang.
Mention in -keep_private_externs's HelpText that the flag only has an
effect with `-r` (which we don't implement yet -- so this patch here
doesn't regress any behavior around -r + -keep_private_externs)). ld64
doesn't explicitly document it, but the commit text of
http://reviews.llvm.org/rL216146 does, and ld64's
OutputFile::buildSymbolTable() checks `_options.outputKind() ==
Options::kObjectFile` before calling `_options.keepPrivateExterns()`
(the only reference to that function).
Fixes PR48536.
Differential Revision: https://reviews.llvm.org/D93609
* Migrate most of our tests to use `split-file` instead of `echo`
* Remove individual `rm -f %t/libfoo.a` commands in favor of a top-level `rm -rf %t`
* Remove unused `Inputs/libfunction.s`
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D93604
For x86-64, D33100 added a diagnostic for local-exec TLS relocations referencing a preemptible symbol.
This patch generalizes it to non-preemptible symbols (see `-Bsymbolic` in `tls.s`)
on all targets.
Local-exec TLS relocations resolve to offsets relative to a fixed point within
the static TLS block, which are only meaningful for the executable.
With this change, `clang -fpic -shared -fuse-ld=bfd a.c` on the following example will be flagged for AArch64/ARM/i386/x86-64/RISC-V
```
static __attribute__((tls_model("local-exec"))) __thread long TlsVar = 42;
long bump() { return ++TlsVar; }
```
Note, in GNU ld, at least arm, riscv and x86's ports have the similar
diagnostics, but aarch64 and ppc64 do not error.
Differential Revision: https://reviews.llvm.org/D93331
Alternative to D91611.
The TLS General Dynamic/Local Dynamic code sequences need to mark
`__tls_get_addr` with R_PPC64_TLSGD or R_PPC64_TLSLD, e.g.
```
addis r3, r2, x@got@tlsgd@ha # R_PPC64_GOT_TLSGD16_HA
addi r3, r3, x@got@tlsgd@l # R_PPC64_GOT_TLSGD16_LO
bl __tls_get_addr(x@tlsgd) # R_PPC64_TLSGD followed by R_PPC64_REL24
nop
```
However, there are two deviations form the above:
1. direct call to `__tls_get_addr`. This is essential to implement ld.so in glibc/musl/FreeBSD.
```
bl __tls_get_addr
nop
```
This is only used in a -shared link, and thus not subject to the GD/LD to IE/LE
relaxation issue below.
2. Missing R_PPC64_TLSGD/R_PPC64_TLSGD for compiler generated TLS references
According to Stefan Pintille, "In the early days of the transition from the
ELFv1 ABI that is used for big endian PowerPC Linux distributions to the ELFv2
ABI that is used for little endian PowerPC Linux distributions, there was some
ambiguity in the specification of the relocations for TLS. The GNU linker has
implemented support for correct handling of calls to __tls_get_addr with a
missing relocation. Unfortunately, we didn't notice that the IBM XL compiler
did not handle TLS according to the updated ABI until we tried linking XL
compiled libraries with LLD."
In short, LLD needs to work around the old IBM XL compiler issue.
Otherwise, if the object file is linked in -no-pie or -pie mode,
the result will be incorrect because the 4 instructions are partially
rewritten (the latter 2 are not changed).
Work around the compiler bug by disable General Dynamic/Local Dynamic to
Initial Exec/Local Exec relaxation. Note, we also disable Initial Exec
to Local Exec relaxation for implementation simplicity, though technically it can be kept.
ppc64-tls-missing-gdld.s demonstrates the updated behavior.
Reviewed By: #powerpc, stefanp, grimar
Differential Revision: https://reviews.llvm.org/D92959
Also remove iteration over ArchiveFile symbols in buildInputSectionPriorities --
that was rendered unnecessary after D92539, which included ObjFiles from
ArchiveFiles inside the `inputFiles` vector.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93569
Obj-C symbols may have spaces and colons, which our previous order file
parser would be confused by. The order file format has made the very unfortunate
choice of using colons for its delimiters, which means that we have to use
heuristics to determine if a given colon is part of a symbol or not...
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93567
The common encodings table holds only 127 entries. The encodings index for compact entries is 8 bits wide, and indexes 127..255 are stored locally to each second-level page. Prior to this diff, lld would `fatal()` if encodings overflowed the 127 limit.
This diff populates a per-second-level-page encodings table as needed. When the per-page encodings table hits its limit, we must terminate the page. If such early termination would consume fewer entries than a regular (non-compact) encoding page, then we prefer the regular format.
Caveat: one reason the common-encoding table might overflow is because of DWARF debug-info references, which are not yet implemented and will come with a later diff.
Differential Revision: https://reviews.llvm.org/D93267
We need to make sure not to emit R_X86_64_GOTPCRELX relocations for
instructions that use a REX prefix. If a REX prefix is present, we need to
instead use a R_X86_64_REX_GOTPCRELX relocation. The existing logic for
CALL64m, JMP64m, etc. already handles this by checking the HasREX parameter
and using it to determine which relocation type to use. Do this for all
instructions that can use relaxed relocations.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93561
Currently, `ELFFile<ELFT>::getEntry` does not check an index of
an entry. Because of that the code might read past the end of the symbol
table silently. I've added a test to `llvm-readobj\ELF\relocations.test`
to demonstrate the possible issue. Also, I've added a unit test for
this method.
After this change, `getEntry` stops reporting the section index and
reuses the `getSectionContentsAsArray` method, which already has
all the validation needed. Our related warnings now provide
more and better context sometimes.
Differential revision: https://reviews.llvm.org/D93209
TREATMENT can be `error`, `warning`, `suppress`, or `dynamic_lookup`
The `dymanic_lookup` remains unimplemented for now.
Differential Revision: https://reviews.llvm.org/D93263
Fixes issue where if a line section doesn't start with a line number
then the addresses at the beginning of the section don't have line numbers.
For example, for a line section like this
```
0001:00000010-00000014, line/column/addr entries = 1
7 00000013 !
```
a line number wouldn't be found for addresses from 10 to 12.
This matches behavior when using the DIA SDK.
Differential Revision: https://reviews.llvm.org/D93306
As indicated by AArch64 ELF specification, symbols with st_other
marked with STO_AARCH64_VARIANT_PCS indicates it may follow a variant
procedure call standard with different register usage convention
(for instance SVE calls).
Static linkers must preserve the marking and propagate it to the dynamic
symbol table if any reference or definition of the symbol is marked with
STO_AARCH64_VARIANT_PCS, and add a DT_AARCH64_VARIANT_PCS dynamic tag if
there are R_<CLS>_JUMP_SLOT relocations that reference that symbols.
It implements https://bugs.llvm.org/show_bug.cgi?id=48368.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93045
Note that dylibs without *any* refs will still be loaded in the usual
(strong) fashion.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93435
Weak references need not necessarily be satisfied at runtime (but they must
still be satisfied at link time). So symbol resolution still works as per usual,
but we now pass around a flag -- ultimately emitting it in the bind table -- to
indicate if a given dylib symbol is a weak reference.
ld64's behavior for symbols that have both weak and strong references is
a bit bizarre. For non-function symbols, it will emit a weak import. For
function symbols (those referenced by BRANCH relocs), it will emit a
regular import. I'm not sure what value there is in that behavior, and
since emulating it will make our implementation more complex, I've
decided to treat regular weakrefs like function symbol ones for now.
Fixes PR48511.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93369
Similar to D77853. Change ADRP to print the target address in hex, instead of the raw immediate.
The behavior is similar to GNU objdump but we also include `0x`.
Note: GNU objdump is not consistent whether or not to emit `0x` for different architectures. We try emitting 0x consistently for all targets.
```
GNU objdump: adrp x16, 10000000
Old llvm-objdump: adrp x16, #0
New llvm-objdump: adrp x16, 0x10000000
```
`adrp Xd, 0x...` assembles to a relocation referencing `*ABS*+0x10000` which is not intended. We need to use a linker or use yaml2obj.
The main test is `test/tools/llvm-objdump/ELF/AArch64/pcrel-address.yaml`
Differential Revision: https://reviews.llvm.org/D93241
Fix PR48357: If .rela.dyn appears as an output section description, its type may
be SHT_RELA (due to the empty synthetic .rela.plt) while there is no input
section. The empty .rela.dyn may be retained due to a reference in a linker
script. Don't crash.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D93367
From what I can tell, it's essentially identical to
`-sub_library`, but it doesn't match files ending in ".dylib".
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93276
Their addresses are already encoded as section-relative offsets, so
there's no need to rebase them at runtime. {D85080} has some context
on the weirdness of TLV sections.
Fixes llvm.org/PR48491.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93257
We were not setting forceWeakImport for file paths given by
`-weak_library` if we had already loaded the file. This diff fixes that
by having `loadDylib` return a cached DylibFile instance even if we have
already loaded that file.
We still avoid emitting multiple LC_LOAD_DYLIBs, but we achieve this by
making inputFiles a SetVector instead of relying on the `loadedDylibs`
cache.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93255
Follow the naming set by TI's own GCC-based toolchain.
Also, force the `osabi` field to `ELFOSABI_STANDALONE`, this matches GNU LD's output (the patching is done in `elf32_msp430_post_process_headers`).
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D92931
The original tests have unneeded symbols and copy-relocation-zero-abs-addr.s
does not actually test anything.
Rewrite them and add copy-relocation-zero-addr.s instead.
Add --soname=b so that the address 0x203400 will be stable. (When linking an
executable with %t.so, the path %t.so will be recorded in the DT_NEEDED entry if
%t.so doesn't have DT_SONAME. .dynstr will have varying lengths on different
systems.)
This test may fail if there is a new changes to this tests.
The archives are not deleted so the contents from the previous test run
may affect the contents for the current run,
so this will require cleaning up the Output dir or force build of buildbot.
The fix is to put all the objects in the temporary dir that we cleanup every run,
to avoid run-2-run flaky failures.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93128
lto-object-path.ll, like stabs.s, is disabled on Windows as the path
separators make it difficult to write a test that works across
platforms.
This diff also disables implicit-dylibs.s on Windows as we seem to emit
LC_LOAD_DYLIBs in a different order on that platform. This seems like a
bug in LLD that needs to be addressed (in a future diff).
Allow exclusion/discarding of custom sections with COMDAT groups.
It piggybacks on the existing COMDAT-handling code, but applies to custom sections as well.
Differential Revision: https://reviews.llvm.org/D92950
We have two types of relocations that we apply on startup:
1. Relocations that apply to wasm globals
2. Relocations that apply to wasm memory
The first set of relocations use only the `__memory_base` import to
update a set of internal globals. Because wasm globals are thread local
these need to run on each thread. Memory relocations, like static
constructors, must only be run once.
To ensure global relocations run on all threads and because the only
depend on the immutable `__memory_base` import we can run them during
the WebAssembly start functions, instead of waiting until the
post-instantiation __wasm_call_ctors.
Differential Revision: https://reviews.llvm.org/D93066
Dylibs that are "public" -- i.e. top-level system libraries -- are considered
implicitly linked when another library re-exports them. That is, we should load
them & bind directly to their symbols instead of via their re-exporting
umbrella library. This diff implements that behavior by default, as well as an
opt-out flag.
In theory, this is just a performance optimization, but in practice it seems
that it's needed for correctness.
Fixes llvm.org/PR48395.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D93000
We need to initialize AsmParsers before any calls to `addFile`, as
bitcode files may require them. Otherwise we trigger `Assertion T &&
T->hasMCAsmParser()' failed`.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D92913
`-mcpu` and `-code-model` tests were copied from similar ones in
LLD-ELF.
There doesn't seem to be an equivalent test for `-mattr` in LLD-ELF, so
I've verified our behavior by cribbing a test from
CodeGen/X86/recip-fastmath.ll.
Reviewed By: #lld-macho, compnerd, MaskRay
Differential Revision: https://reviews.llvm.org/D92912
This was causing a crash as we were attempting to look up the
nonexistent parent OutputSection of the debug sections. We didn't detect
it earlier because there was no test for PIEs with debug info (PIEs
require us to emit rebases for X86_64_RELOC_UNSIGNED).
This diff filters out the debug sections while loading the ObjFiles. In
addition to fixing the above problem, it also lets us avoid doing
redundant work -- we no longer parse / apply relocations / attempt to
emit dyld opcodes for these sections that we don't emit.
Fixes llvm.org/PR48392.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92904
This makes it possible for STABS entries to reference the debug info
contained in the LTO-compiled output.
I'm not sure how to test the file mtime within llvm-lit -- GNU and BSD
`stat` take different command-line arguments. I've omitted the check for
now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D92537
Normally we should not delete options. However, the Clang driver passes
`-plugin-opt={new,legacy}-pass-manager` instead of
`--[no-]lto-legacy-pass-manager` (`-plugin-opt=new-pass-manager` has been used
since 7.0), and it is unlikely anyone will use the `--lto-*` style options directly.
So let's rename them to be consistent with the Clang driver option names.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D92988
-DENABLE_EXPERIMENTAL_NEW_PASS_MANAGER=on configured LLD and LLVMgold.so
will use the new pass manager by default. Add an option to
use the legacy pass manager. This will also be used by the Clang driver
when -fno-new-pass-manager (D92915) / -fno-experimental-new-pass-manager is set.
Reviewed By: aeubanks, tejohnson
Differential Revision: https://reviews.llvm.org/D92916
Also error out if we find anything other than an object or bitcode file
in the archive.
Note that we were previously inserting the symbols and sections of the
unpacked ObjFile into the containing ArchiveFile. This was actually
unnecessary -- we can just insert the ObjectFile (or BitcodeFile) into
the `inputFiles` vector. This is the approach taken by LLD-ELF.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92539
This patch changes the archive handling to enable the semantics needed
for legacy FORTRAN common blocks and block data. When we have a COMMON
definition of a symbol and are including an archive, LLD will now
search the members for global/weak defintions to override the COMMON
symbol. The previous LLD behavior (where a member would only be included
if it satisifed some other needed symbol definition) can be re-enabled with the
option '-no-fortran-common'.
Differential Revision: https://reviews.llvm.org/D86142
This change improves our support for shared memory to include
PIC executables (and shared libraries).
To handle this case the linker-generated `__wasm_init_memory`
function (that only exists in shared memory builds) must be
capable of loading memory segements at non-const offsets based
on the runtime value of `__memory_base`.
Differential Revision: https://reviews.llvm.org/D92620
This makes the llvm-objdump output much more readable and closer to binutils objdump. This builds on D76591
It requires changing the OperandType for certain immediates to "OPERAND_PCREL" so tablegen will generate code to pass the instruction's address. This means we can't do the generic check on these instructions in verifyInstruction any more. Should I add it back with explicit opcode checks? Or should we add a new operand flag to control the passing of address instead of matching the name?
Differential Revision: https://reviews.llvm.org/D92147
clang puts `-framework CoreFoundation` in this load command for files
that use @available / __builtin_available. Without support for this,
binaries that don't explicitly link to CoreFoundation fail to link.
Differential Revision: https://reviews.llvm.org/D92624
This helps us catch cases where we add support for a flag but forget to
remove HelpHidden from Options.td.
More explicit alternative to D92455
Differential Revision: https://reviews.llvm.org/D92575
Don't early return from layoutMemory in PIC mode before we have set the
memory limits.
This matters in particular with shared-memory + PIC because shared
memories require maximum size.
Secondly, when we need a maximum, but the user does not supply one,
default to MAX_INT rather than 0 (defaulting to zero is completely
useless and means that building with -shared didn't previously work at
all without --maximum-memory, because zero is never big enough).
This is part of an ongoing effort to enable dynamic linking with
threads in emscripten.
See https://github.com/emscripten-core/emscripten/issues/3494
Differential Revision: https://reviews.llvm.org/D92528
The conditional guarding createInitMemoryFunction was incorrect and
didn't match that guarding the creation of the associated symbol.
Rather that reproduce the same conditions in multiple places we can
simply use the presence of the associated symbol.
Also, add an assertion that would have caught this bug.
Also, add a new test for this flag combination.
This is part of an ongoing effort to enable dynamic linking with
threads in emscripten.
See https://github.com/emscripten-core/emscripten/issues/3494
Differential Revision: https://reviews.llvm.org/D92520
The problem was that `sym` became replaced in the call
to make<ObjFile> and referring to it afer that read memory that now
stored a different kind of symbol (a Defined instead of a LazySymbol).
Since this happens only once per archive, just copy the symbol to the
stack before make<ObjFile> and read the copy instead.
Originally reviewed at https://reviews.llvm.org/D92496
This is useful for debugging why lld loads .o files it shouldn't load.
It's also useful for users of lld -- I've used ld64's version of this a
few times.
Differential Revision: https://reviews.llvm.org/D92496
This reverts a side effect introduced in the code cleanup patch D43571:
LLD started to emit empty output sections that are explicitly assigned to a segment.
This patch fixes the issue by removing the !sec.phdrs.empty() special case from
isDiscardable. As compensation, we add an early phdrs propagation step (see the inline comment).
This is similar to one that we do in adjustSectionsAfterSorting.
Differential revision: https://reviews.llvm.org/D92301
Also, for .o files, include full path as given on link command line.
Before:
lld: error: undefined symbol [...], referenced from sandbox_logging.o
After:
lld: error: undefined symbol [...], referenced from libseatbelt.a(sandbox_logging.o)
Move archiveName up to InputFile so we can consistently use toString()
to print InputFiles in diags, and pass it to the ObjFile ctor. This
matches the ELF and COFF ports.
Differential Revision: https://reviews.llvm.org/D92437
Under existing behavior discarded functions are relocated to have the start pc
0. This causes problems when debugging as they typically overlap the first
function and lldb symbol resolution frequently chooses a discarded function
instead of the correct one. Using the value -1 or -2 (depending on which DWARF
section we are writing) is sufficient to prevent lldb from resolving to these
symbols.
Reviewed By: MaskRay, yurydelendik, sbc100
Differential Revision: https://reviews.llvm.org/D91803
In addition, disallow `-lto-new-pass-manager` (see D79371).
Note: the ELF port has also adopted --no-lto-new-pass-manager
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D92422
- most importantly, fix a use-after-free when using thin archives,
by putting the archive unique_ptr to the arena allocator. This
ports D65565 to MachO
- correctly demangle symbol namess from archives in diagnostics
- add a test for thin archives -- it finds this UaF, but only when
running it under asan (it also finds the demangling fix)
- make forceLoadArchive() use addFile() with a bool to have the archive
loading code in fewer places. no behavior change; matches COFF port a
bit better
Differential Revision: https://reviews.llvm.org/D92360
This is the same logic that ld64 uses to determine which sections
contain functions. This was added so that we could determine which
STABS entries should be N_FUN.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D92430
This addresses a lot of the comments in {D89257}. Ideally it'd have been
done in the same diff, but the commits in between make that difficult.
This diff implements:
* N_GSYM and N_STSYM, the STABS for global and static symbols
* Has the STABS reflect the section IDs of their referent symbols
* Ensures we don't fail when encountering absolute symbols or files with
no debug info
* Sorts STABS symbols by file to minimize the number of N_OSO entries
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D92366
We should also set the modtime when running LTO. That will be done in a
future diff, together with support for the `-object_path_lto` flag.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D91318
ld64 emits string tables which start with a space and a zero byte. We
match its behavior here since some tools depend on it.
Similar rationale as {D89561}.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D89639
Symbols of the same type must be laid out contiguously: following ld64's
lead, we choose to emit all local symbols first, then external symbols,
and finally undefined symbols. For each symbol type, the LC_DYSYMTAB
load command will record the range (start index and total number) of
those symbols in the symbol table.
This work was motivated by the fact that LLDB won't search for debug
info if LC_DYSYMTAB says there are no local symbols (since STABS symbols
are all local symbols). With this change, LLDB is now able to display
the source lines at a given breakpoint when debugging our binaries.
Some tests had to be updated due to local symbol names now appearing in
`llvm-objdump`'s output.
Reviewed By: #lld-macho, smeenai, clayborg
Differential Revision: https://reviews.llvm.org/D89285
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
* Enable PIE by default if targeting 10.6 or above on x86-64. (The
manpage says 10.7, but that actually applies only to i386, and in
general varies based on the target platform. I didn't update the
manpage because listing all the different behaviors would make for a
pretty long description.)
* Add support for `-no_pie`
* Remove `HelpHidden` from `-pie`
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92362
This reverts commit cf1c774d6a.
This change caused several regressions in the gdb test suite - at least
a sample of which was due to line zero instructions making breakpoints
un-lined. I think they're worth investigating/understanding more (&
possibly addressing) before moving forward with this change.
Revert "[FastISel] NFC: Clean up unnecessary bookkeeping"
This reverts commit 3fd39d3694.
Revert "[FastISel] NFC: Remove obsolete -fast-isel-sink-local-values option"
This reverts commit a474657e30.
Revert "Remove static function unused after cf1c774."
This reverts commit dc35368ccf.
Revert "[lldb] Fix TestThreadStepOut.py after "Flush local value map on every instruction""
This reverts commit 53a14a47ee.
If an object file has an undefined foo@v1, we emit a dynamic symbol foo.
This is incorrect if at runtime a shared object provides the non-default version foo@v1
(the undefined foo may bind to foo@@v2, for example).
GNU ld issues an error for this case, even if foo@v1 is undefined weak
(https://sourceware.org/bugzilla/show_bug.cgi?id=3351). This behavior makes
sense because to represent an undefined foo@v1, we have to construct a Verneed
entry. However, without knowing the defining filename, we cannot construct a
Verneed entry (Verneed::vn_file is unavailable).
This patch implements the error.
Depends on D92258
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D92260
The symbol resolution rules for versioned symbols are:
* foo@@v1 (default version) resolves both undefined foo and foo@v1
* foo@v1 (non-default version) resolves undefined foo@v1
Note, foo@@v1 must be defined (the assembler errors if attempting to
create an undefined foo@@v1).
For defined foo@@v1 in a shared object, we call `SymbolTable::addSymbol` twice,
one for foo and the other for foo@v1. We don't do the same for object files, so
foo@@v1 defined in one object file incorrectly does not resolve a foo@v1
reference in another object file.
This patch fixes the issue by reusing the --wrap code to redirect symbols in
object files. This has to be done after processing input files because
foo and foo@v1 are two separate symbols if we haven't seen foo@@v1.
Add a helper `Symbol::getVersionSuffix` to retrieve the optional trailing
`@...` or `@@...` from the possibly truncated symbol name.
Depends on D92258
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D92259
Test the symbol resolution related to
* defined foo@@v1 and foo@v1 in object files/shared objects
* undefined foo@v1
* weak foo@@v1 and foo@v1
* visibility
* interaction with --wrap.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D92258
This is the #1 of 2 changes that make remarks hotness threshold option
available in more tools. The changes also allow the threshold to sync with
hotness threshold from profile summary with special value 'auto'.
This change modifies the interface of lto::setupLLVMOptimizationRemarks() to
accept remarks hotness threshold. Update all the tools that use it with remarks
hotness threshold options:
* lld: '--opt-remarks-hotness-threshold='
* llvm-lto2: '--pass-remarks-hotness-threshold='
* llvm-lto: '--lto-pass-remarks-hotness-threshold='
* gold plugin: '-plugin-opt=opt-remarks-hotness-threshold='
Differential Revision: https://reviews.llvm.org/D85809
The existing code handles this correctly and I checked that the code
in NativeInlineSiteSymbol also handles this correctly, but it was
wrong in the NativeFunctionSymbol code.
Differential Revision: https://reviews.llvm.org/D92134
They've been implemented since D87856 but since they still were
HelpHidden, the driver still warned claiming they were implemented.
Remove HelpHidden.
Use -fatal_warnings to test that the flags now don't warn. The
test depends on D91894 and D91891 to pass.
Differential Revision: https://reviews.llvm.org/D91971
Now, new mach-o lld no longer warns if the isysroot has just
usr/lib and System/Library/Frameworks but is missing usr/local/lib
and System/Frameworks.
This matches ld64 and old mach-o lld and fixes a regression from D85992.
It also fixes the only test failure in `check-lld` when running it
on an M1 Mac.
Differential Revision: https://reviews.llvm.org/D91891
clang may produce `movl x@GOTPCREL+4(%rip), %eax` when loading the high 32 bits
of the address of a global variable in -fpic/-fpie mode.
If assembled by GNU as, the fixup emits an R_X86_64_GOTPCRELX with an
addend != -4. The instruction loads from the GOT entry with an offset
and thus it is incorrect to relax the instruction.
If assembled by the integrated assembler, we emit R_X86_64_GOTPCREL for
relocations that definitely cannot be relaxed (D92114), so this patch is not
needed.
This patch disables the relaxation, which is compatible with the implementation in GNU ld
("Add R_X86_64_[REX_]GOTPCRELX support to gas and ld").
Reviewed By: grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D91993
This adds support for ld.lld's --reproduce / lld-link's /reproduce:
flag to the MachO port. This flag can be added to a link command
to make the link write a tar file containing all inputs to the link
and a response file containing the link command. This can be used
to reproduce the link on another machine, which is useful for sharing
bug report inputs or performance test loads.
Since the linker is usually called through the clang driver and
adding linker flags can be a bit cumbersome, setting the env var
`LLD_REPRODUCE=foo.tar` triggers the feature as well.
The file response.txt in the archive can be used with
`ld64.lld.darwinnew $(cat response.txt)` as long as the contents are
smaller than the command-line limit, or with `ld64.lld.darwinnew
@response.txt` once D92149 is in.
The support in this patch is sufficient to create a tar file for
Chromium's base_unittests that can link after unpacking on a different
machine.
Differential Revision: https://reviews.llvm.org/D92274
Also sync help texts for the option between elf and coff ports.
Decisions:
- Do this even if /lldignoreenv is passed. /reproduce: does not affect
the main output, and this makes the env var more convenient to use.
(On the other hand, it's now possible to set this env var and forget
about it, and all future builds in the same shell will be much slower.
That's true for ld.lld, but posix shells have an easy way to set an
env var for a single command; in cmd.exe this is not possible without
contortions. Then again, lld-link runs in posix shells too.)
Original patch rebased across D68378 and D68381.
Differential Revision: https://reviews.llvm.org/D67707
Without this extra flag we can't distingish between stub functions and
functions that happen to have address 0 (relative to __table_base).
Adding this flag bit the base symbol class actually avoids growing the
SymbolUnion struct which would not be true if we added it to the
FunctionSymbol subclass (due to bitbacking).
The previous approach of setting it's table index to zero worked for
normal static relocations but not for `-fPIC` code.
See https://github.com/emscripten-core/emscripten/issues/12819
Differential Revision: https://reviews.llvm.org/D92038
In https://reviews.llvm.org/D89072 I added static const data members
to the debug subsection for globals. It skipped emitting an S_CONSTANT if it
didn't have a value, which meant the subsection could be empty.
This patch fixes the empty subsection issue.
Differential Revision: https://reviews.llvm.org/D92049
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
Differential Revision: https://reviews.llvm.org/D91734
Enables overriding earlier --lto-whole-program-visibility.
Variant of D91583 while discussing alternate ways to identify and
handle the --export-dynamic case.
Differential Revision: https://reviews.llvm.org/D92060
Also use "unknown flag 'flag'" instead of "unknown flag: flag" for
consistency with the other ports.
Differential Revision: https://reviews.llvm.org/D91970
This patch:
- adds an ld64.lld.darwinnew symlink for lld, to go with f2710d4b57,
so that `clang -fuse-ld=lld.darwinnew` can be used to test new
Mach-O lld while it's in bring-up. (The expectation is that we'll
remove this again once new Mach-O lld is the defauld and only Mach-O
lld.)
- lets the clang driver know if the linker is lld (currently
only triggered if `-fuse-ld=lld` or `-fuse-ld=lld.darwinnew` is
passed). Currently only used for the next point, but could be used
to implement other features that need close coordination between
compiler and linker, e.g. having a diag for calling `clang++` instead
of `clang` when link errors are caused by a missing C++ stdlib.
- lets the clang driver pass `-demangle` to Mach-O lld (both old and
new), in addition to ld64
- implements -demangle for new Mach-O lld
- changes demangleItanium() to accept _Z, __Z, ___Z, ____Z prefixes
(and updates one test added in D68014). Mach-O has an extra
underscore for symbols, and the three (or, on Mach-O, four)
underscores are used for block names.
Differential Revision: https://reviews.llvm.org/D91884
llvm-symbolizer used to use the DIA SDK for symbolization on
Windows; this patch switches to using native symbolization, which was
implemented recently.
Users can still make the symbolizer use DIA by adding the `-dia` flag
in the LLVM_SYMBOLIZER_OPTS environment variable.
Differential Revision: https://reviews.llvm.org/D91814
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
This is a more full featured version of ``--allow-undefined``.
The semantics of the different methods are as follows:
report-all:
Report all unresolved symbols. This is the default. Normally the
linker will generate an error message for each reported unresolved
symbol but the option ``--warn-unresolved-symbols`` can change this
to a warning.
ignore-all:
Resolve all undefined symbols to zero. For data and function
addresses this is trivial. For direct function calls, the linker
will generate a trapping stub function in place of the undefined
function.
import-functions:
Generate WebAssembly imports for any undefined functions. Undefined
data symbols are resolved to zero as in `ignore-all`. This
corresponds to the legacy ``--allow-undefined`` flag.
The plan is to followup with a new mode called `import-dynamic` which
allows for statically linked binaries to refer to both data and
functions symbols from the embedder.
Differential Revision: https://reviews.llvm.org/D79248
As mentioned in https://reviews.llvm.org/D67479#1667256 ,
* `--[no-]allow-shlib-undefined` control the diagnostic for an unresolved symbol in a shared object
* `-z defs/-z undefs` control the diagnostic for an unresolved symbol in a regular object file
* `--unresolved-symbols=` controls both bits.
In addition, make --warn-unresolved-symbols affect --no-allow-shlib-undefined.
This patch makes the behavior match GNU ld.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D91510
This adds `--[no-]color-diagnostics[=auto,never,always]` to
the MachO port and harmonizes the flag in the other ports:
- Consistently use MetaVarName
- Consistently document the non-eq version as alias of the eq version
- Use B<> in the ports that have it (no-op, shorter)
- Fix oversight in COFF port that made the --no flag have the wrong
prefix
Differential Revision: https://reviews.llvm.org/D91640
`try ... catch` in an inline function produces `.gcc_except_table.*` in a COMDAT
group with GCC or newer Clang (since D83655). For --gc-sections, currently we
scan `.eh_frame` pieces and mark liveness of such a `.gcc_except_table.*` and
then the associated `.text.*` (if a member in a section group is retained, the
others should be retained as well).
Essentially all `.text.*` and `.gcc_except_table.*` compiled from inline
functions with `try ... catch` cannot be discarded by the imprecise
--gc-sections. Compared with the state before D83655, the output
`.gcc_except_table` is smaller (non-prevailing copies in COMDAT groups can now
be discarded) but `.text` may be larger, i.e. size regression.
This patch teaches the .eh_frame piece scanning code to not mark
`.gcc_except_table` in a section group, thus allow unused `.text.*` and
`.gcc_except_table.*` in a section group to be discarded.
Note, non-group `.gcc_except_table` can still not be discarded. That is the status quo.
Reviewed By: grimar, echristo
Differential Revision: https://reviews.llvm.org/D91579
These relocations represent offsets from the __tls_base symbol.
Previously we were just using normal MEMORY_ADDR relocations and relying
on the linker to select a segment-offset rather and absolute value in
Symbol::getVirtualAddress(). Using an explicit relocation type allows
allow us to clearly distinguish absolute from relative relocations based
on the relocation information alone.
One place this is useful is being able to reject absolute relocation in
the PIC case, but still accept TLS relocations.
Differential Revision: https://reviews.llvm.org/D91276
Fixes PR48071
* The Rust compiler produces SHF_ALLOC `.debug_gdb_scripts` (which normally does not have the flag)
* `.debug_gdb_scripts` sections are removed from `inputSections` due to --strip-debug/--strip-all
* When processing --gc-sections, pieces of a SHF_MERGE section can be marked live separately
`=>` segfault when marking liveness of a `.debug_gdb_scripts` which is not split into pieces (because it is not in `inputSections`)
This patch circumvents the problem by not treating SHF_ALLOC ".debug*" as debug sections (to prevent --strip-debug's stripping)
(which is still useful on its own).
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D91291
Input sections `.ctors/.ctors.N` may go to either the output section `.init_array` or the output section `.ctors`:
* output `.ctors`: currently we sort them by name. This patch changes to sort by priority from high to low. If N in `.ctors.N` is in the form of %05u, there is no semantic difference. Actually GCC and Clang do use %05u. (In the test `ctors_dtors_priority.s` and Gold's test `gold/testsuite/script_test_14.s`, we can see %03u, but they are not really produced by compilers.)
* output `.init_array`: users can provide an input section description `SORT_BY_INIT_PRIORITY(.init_array.* .ctors.*)` to mix `.init_array.*` and `.ctors.*`. This can make .init_array.N and .ctors.(65535-N) interchangeable.
With this change, users can mix `.ctors.N` and `.init_array.N` in `.init_array` (PR44698 and PR48096) with linker scripts. As an example:
```
SECTIONS {
.init_array : {
*(SORT_BY_INIT_PRIORITY(.init_array.* .ctors.*))
*(.init_array EXCLUDE_FILE (*crtbegin.o *crtbegin?.o *crtend.o *crtend?.o ) .ctors)
}
} INSERT AFTER .fini_array;
SECTIONS {
.fini_array : {
*(SORT_BY_INIT_PRIORITY(.fini_array.* .dtors.*))
*(.fini_array EXCLUDE_FILE (*crtbegin.o *crtbegin?.o *crtend.o *crtend?.o ) .dtors)
}
} INSERT BEFORE .init_array;
```
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D91187
According to
https://sourceware.org/binutils/docs/ld/Input-Section-Basics.html#Input-Section-Basics
for `*(.a .b)`, the order should match the input order:
* for `ld 1.o 2.o`, sections from 1.o precede sections from 2.o
* within a file, `.a` and `.b` appear in the section header table order
This patch implements the behavior. The interaction with `SORT*` and --sort-section is:
Matched sections are ordered by radix sort with the keys being `(SORT*, --sort-section, input order)`,
where `SORT*` (if present) is most significant.
> Note, multiple `SORT*` within an input section description has undocumented and
> confusing behaviors in GNU ld:
> https://sourceware.org/pipermail/binutils/2020-November/114083.html
> Therefore multiple `SORT*` is not the focus for this patch but
> this patch still strives to have an explainable behavior.
As an example, we partition `SORT(a.*) b.* c.* SORT(d.*)`, into
`SORT(a.*) | b.* c.* | SORT(d.*)` and perform sorting within groups. Sections
matched by patterns between two `SORT*` are sorted by input order. If
--sort-alignment is given, they are sorted by --sort-alignment, breaking tie by
input order.
This patch also allows a section to be matched by multiple patterns, previously
duplicated sections could occupy more space in the output and had erroneous zero bytes.
The patch is in preparation for support for
`*(SORT_BY_INIT_PRIORITY(.init_array.* .ctors.*)) *(.init_array .ctors)`,
which will allow LLD to mix .ctors*/.init_array* like GNU ld (gold's --ctors-in-init-array)
PR44698 and PR48096
Reviewed By: grimar, psmith
Differential Revision: https://reviews.llvm.org/D91127
The second `SORT` in `*(SORT(...) SORT(...))` is incorrectly parsed as a file pattern.
Fix the bug by stopping at `SORT*` in `readInputSectionsList`.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D91180
This is a follow-up for D70378 (Cover usage of LLD as a library).
While debugging an intermittent failure on a bot, I recalled this scenario which
causes the issue:
1.When executing lld/test/ELF/invalid/symtab-sh-info.s L45, we reach
lld:🧝:Obj-File::ObjFile() which goes straight into its base ELFFileBase(),
then ELFFileBase::init().
2.At that point fatal() is thrown in lld/ELF/InputFiles.cpp L381, leaving a
half-initialized ObjFile instance.
3.We then end up in lld::exitLld() and since we are running with LLD_IN_TEST, we
hapily restore the control flow to CrashRecoveryContext::RunSafely() then back
in lld::safeLldMain().
4.Before this patch, we called errorHandler().reset() just after, and this
attempted to reset the associated SpecificAlloc<ObjFile<ELF64LE>>. That tried
to free the half-initialized ObjFile instance, and more precisely its
ObjFile::dwarf member.
Sometimes that worked, sometimes it failed and was catched by the
CrashRecoveryContext. This scenario was the reason we called
errorHandler().reset() through a CrashRecoveryContext.
But in some rare cases, the above repro somehow corrupted the heap, creating a
stack overflow. When the CrashRecoveryContext's filter (that is,
__except (ExceptionFilter(GetExceptionInformation()))) tried to handle the
exception, it crashed again since the stack was exhausted -- and that took the
whole application down. That is the issue seen on the bot. Locally it happens
about 1 times out of 15.
Now this situation can happen anywhere in LLD. Since catching stack overflows is
not a reliable scenario ATM when using CrashRecoveryContext, we're now
preventing further re-entrance when such failures occur, by signaling
lld::SafeReturn::canRunAgain=false. When running with LLD_IN_TEST=2 (or above),
only one iteration will be executed, instead of two.
Differential Revision: https://reviews.llvm.org/D88348
This broke both Firefox and Chromium (PR47905) due to what seems like dllimport
function not being handled correctly.
> This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
> Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
>
> Reviewed By: rnk
>
> Differential Revision: https://reviews.llvm.org/D87544
This reverts commit cfd8481da1.
Previously we limited the use of atomics and TLS to programs
linked with `--shared-memory`.
However, as of https://reviews.llvm.org/D79530 we now allow
programs that use atomic to be linked without `--shared-memory`.
For this to be useful we also want to all TLS usage in such
programs. In this case, since we know we are single threaded
we simply include the TLS data as a regular active segment
and create an immutable `__tls_base` global that point to the
start of this segment.
Fixes: https://github.com/emscripten-core/emscripten/issues/12489
Differential Revision: https://reviews.llvm.org/D91115
Just enough to consume some bitcode files and link them. There's more
to be done around the symbol resolution API and the LTO config, but I don't yet
understand what all the various LTO settings do...
Reviewed By: #lld-macho, compnerd, smeenai, MaskRay
Differential Revision: https://reviews.llvm.org/D90663
We should have maxprot == initprot for all non-i386 architectures, which
is what ld64 does.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D89420
Apple devtools use this to locate the dSYM files for a given
binary.
The UUID is computed based on an MD5 hash of the binary's contents. In order to
hash the contents, we must first write them, but LC_UUID itself must be part of
the written contents in order for all the offsets to be calculated correctly.
We resolve this circular paradox by first writing an LC_UUID with an all-zero
UUID, then updating the UUID with its real value later.
I'm not sure there's a good way to test that the value of the UUID is
"as expected", so I've just checked that it's present.
Reviewed By: #lld-macho, compnerd, smeenai
Differential Revision: https://reviews.llvm.org/D89418
Stub dylibs differ from "real" dylibs in that they lack any content in
their sections. What they do have are export tries and symbol tables,
which means we can still link against them. I am unclear how to
properly create these stub dylibs; XCode 11.3's `lipo` is able to create
stub dylibs, but those lack LC_ID_DYLIB load commands and are considered
invalid by most tooling. Newer versions of `lipo` aren't able to create
stub dylibs at all. However, recent SDKs in XCode still come with valid
stub dylibs, so it still seems worthwhile to support them. The YAML in
this diff's test was generated by taking a non-stub dylib and editing
the appropriate fields.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D89012
This covers a few cases that aren't otherwise tested:
1) Non-ascii symbol names are ordered.
2) Comments, whitespace and blank lines are trimmed.
3) Missing order files result in an error.
Reviewed by: MaskRay, grimar
Differential Revision: https://reviews.llvm.org/D90933
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
This is more or less a port of rL329598 (D45275) to the COFF linker.
Since there were already LTO-related settings under -opt:, I added
them there instead of new flags.
Differential Revision: https://reviews.llvm.org/D90624
Make it possible for lld users to provide a custom script that would help to
find missing libraries. A possible scenario could be:
% clang /tmp/a.c -fuse-ld=lld -loauth -Wl,--error-handling-script=/tmp/addLibrary.py
unable to find library -loauth
looking for relevant packages to provides that library
liboauth-0.9.7-4.el7.i686
liboauth-devel-0.9.7-4.el7.i686
liboauth-0.9.7-4.el7.x86_64
liboauth-devel-0.9.7-4.el7.x86_64
pix-1.6.1-3.el7.x86_64
Where addLibrary would be called with the missing library name as first argument
(in that case addLibrary.py oauth)
Differential Revision: https://reviews.llvm.org/D87758
In the presence of a gap, the st_value field of a STT_SECTION symbol is the
address of the first input section (incorrect if there is a gap). Set it to the
output section address instead.
In -r mode, this bug can cause an incorrect non-zero st_value of a STT_SECTION
symbol (while output sections have zero addresses, input sections may have
non-zero outSecOff). The non-zero st_value can cause the final link to have
incorrect relocation computation (both GNU ld and LLD add st_value of the
STT_SECTION symbol to the output section address).
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D90520
This test was checking behaviour that only exists in the debug
configuration so will fail in release builds.
Perhaps there is way to keep this test around and only run
it in debug builds but for now I'm removing so fix the
release builders.
Differential Revision: https://reviews.llvm.org/D90542
This field to represents the amount of static data needed by
an dynamic library or executable it should not include things
like heap or stack areas, which in the case of `-pie` are
not determined until runtime (e.g. __stack_pointer is imported).
Differential Revision: https://reviews.llvm.org/D90261
While MC did not produce R_X86_64_GOTPCRELX for test/binop instructions
(movl/adcl/addl/andl/...) before the previous commit, this code path has been
exercised by -fno-integrated-as for GNU as since 2016: -no-pie relaxing
may incorrectly access loc[-3] and produce a corrupted instruction.
Simply handle test/binop R_X86_64_GOTPCRELX like R_X86_64_GOTPCREL.
This partially reverts D85994.
In glibc, elf/dl-sym.c calls the raw `__tls_get_addr` by specifying the
tls_index parameter. Such a call does not have a pairing R_PPC64_TLSGD/R_PPC64_TLSLD.
This is legitimate. Since we cannot distinguish the benign case from cases due
to toolchain issues, we have to be permissive.
Acked by Stefan Pintilie
Add support to LLD for PC Relative Thread Local Storage for Local Dynamic.
This patch adds support for two relocations: R_PPC64_GOT_TLSLD_PCREL34 and
R_PPC64_DTPREL34.
The Local Dynamic code is:
```
pla r3, x@got@tlsld@pcrel R_PPC64_GOT_TLSLD_PCREL34
bl __tls_get_addr@notoc(x@tlsld) R_PPC64_TLSLD
R_PPC64_REL24_NOTOC
...
paddi r9, r3, x@dtprel R_PPC64_DTPREL34
```
After relaxation to Local Exec:
```
paddi r3, r13, 0x1000
nop
...
paddi r9, r3, x@dtprel R_PPC64_DTPREL34
```
Reviewed By: NeHuang, sfertile
Differential Revision: https://reviews.llvm.org/D87504
These are all inspired by existing test coverage we have in an internal
testsuite.
Reviewed by: grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D89775
For a diagnostic `A refers to B` where B refers to a bitcode file, if the
symbol gets optimized out, the user may see `A refers to <internal>`; if the
symbol is retained, the user may see `A refers to lto.tmp`.
Save the reference InputFile * in the DenseMap so that the original filename is
available in reportBackrefs().
The ELF spec says
> If the sh_flags field for this section header includes the attribute SHF_INFO_LINK, then this member represents a section header table index.
Set SHF_INFO_LINK so that binary manipulation tools know that sh_info is
a section header table index instead of (the number of local symbols in the case of SHT_SYMTAB/SHT_DYNSYM).
We have already added SHF_INFO_LINK for --emit-relocs retained SHT_REL[A].
For example, we can teach llvm-objcopy to preserve the section index of the sh_info referenced section if
SHF_INFO_LINK is set. (GNU objcopy recognizes .rel[a].plt and updates
sh_info even if SHF_INFO_LINK is not set).
Reviewed By: grimar, psmith
Differential Revision: https://reviews.llvm.org/D89828
The combination has not been tested before. In the case of ICF,
`e.section->getVA(0)` equals the start address of the output section.
This can cause incorrect overlapping with the actual function at the
start of the output section and potentially trigger a GDB internal error
in `dw2_find_pc_sect_compunit_symtab` (presumably because:
if a short address range incorrectly starts at the start address of the
output section, GDB may pick it instead of the correct longer address
range. When mapping an address within the long address range but
out of the scope of the short address range, the routine may find
nothing - while the code asserts that it can find something).
Note that in the case of ICF there may be duplicate address range entries,
but GDB appears to be fine with them.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D89751
Add a simple forwarding option in the MinGW frontend, and implement
the private -wrap option in the COFF linker.
The feature in lld-link isn't gated by the -lldmingw option, but
the option is left as a private, undocumented option primarily
used by the MinGW driver.
The implementation is significantly based on the support for --wrap
in the ELF linker, but many small nuance details are different
between the ELF and COFF linkers, ending up with more than a few
implementation differences.
This fixes https://bugs.llvm.org/show_bug.cgi?id=47384.
Differential Revision: https://reviews.llvm.org/D89004
Reapplied with the bitfield member canInline fixed so it doesn't break
builds targeting windows.
This reverts commit a012c704b5.
Breaks Windows builds.
C:\src\llvm-mint\lld\COFF\Symbols.cpp(26,1): error: static_assert failed due to requirement 'sizeof(lld::coff::SymbolUnion) <= 48' "symbols should be optimized for memory usage"
static_assert(sizeof(SymbolUnion) <= 48,
Add a simple forwarding option in the MinGW frontend, and implement
the private -wrap option in the COFF linker.
The feature in lld-link isn't gated by the -lldmingw option, but
the option is left as a private, undocumented option primarily
used by the MinGW driver.
The implementation is significantly based on the support for --wrap
in the ELF linker, but many small nuance details are different
between the ELF and COFF linkers, ending up with more than a few
implementation differences.
This fixes https://bugs.llvm.org/show_bug.cgi?id=47384.
Differential Revision: https://reviews.llvm.org/D89004
ICF was not able to merge equivalent sections because of relocations to
sections ineligible for ICF that use alternative symbols, e.g. symbol
aliases or section relative relocations.
Merging in this scenario has been enabled by giving the sections that
are ineligible for ICF a unique ID, i.e. an equivalence class of their
own. This approach also provides another benefit as it improves the
hashing that is used to perform the initial equivalance grouping for
ICF. This is because the ICF ineligible sections can now contribute a
unique value towards the hashes instead of the same value of zero. This
has been seen to reduce link time with ICF by ~68% for objects compiled
with -fprofile-instr-generate.
In order to facilitate this use of a unique ID, the existing
inconsistent approach to the setting of the InputSection eqClass in ICF
has been changed so that there is a clear distinction between the
eqClass values of ICF eligible sections and those of the ineligible
sections that have a unique ID. This inconsistency could have caused
incorrect equivalence class equality in the past, although it appears
that no issues were encountered in actual use.
Differential Revision: https://reviews.llvm.org/D88830
Fixes https://bugs.llvm.org/show_bug.cgi?id=46473
LLD wasn't previously specifying any specific alignment in the TLS table's Characteristics field so the loader would just assume the default value (16 bytes). This works most of the time except if you have thread locals that want specific higher alignments (e.g. 32 as in the bug) *even* if they specify an alignment on the thread local. This change updates LLD to take the max alignment from tls section.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D88637
Revert individual wip commits and will instead follow up with a
single commit with all the changes. Makes cherry-picking easier
and will contain all the right tags.
This reverts commit 32a4ad3b6c.
This reverts commit 7fe13af676.
This reverts commit 51fbc1bef6.
This reverts commit f80950a8bb.
This reverts commit 0778cad9f3.
This reverts commit 8b70d527d7.
This reverts 9b5b305023 and fixes the unwanted re-ordering when generating ThinLTO indexes.
The goal of this patch is to better balance thread utilization during ThinLTO in-process linking (in llvm-lto2 or in LLD). Before this patch, large modules would often be scheduled late during execution, taking a long time to complete, thus starving the thread pool.
We now sort modules in descending order, based on each module's bitcode size, so that larger modules are processed first. By doing so, smaller modules have a better chance to keep the thread pool active, and thus avoid starvation when the bitcode compilation is almost complete.
In our case (on dual Intel Xeon Gold 6140, Windows 10 version 2004, two-stage build), this saves 15 sec when linking `clang.exe` with LLD & -flto=thin, /opt:lldltojobs=all, no ThinLTO cache, -DLLVM_INTEGRATED_CRT_ALLOC=d:\git\rpmalloc.
Before patch: 100 sec
After patch: 85 sec
Inspired by the work done by David Callahan in D60495.
Differential Revision: https://reviews.llvm.org/D87966
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
Adds more testing in basic-assembly.s and a new test tables.s.
Adds support to yaml reading and writing of tables as well.
Differential Revision: https://reviews.llvm.org/D88815
Followup on https://reviews.llvm.org/D85062 which ignores
entire library objects when no symbols are used within them.
This is shouldn't apply with `--whole-archive` since this
is specified to treat them like direct object inputs.
Differential Revision: https://reviews.llvm.org/D89290
This allows `__wasilibc_populate_libpreopen` to be GC'd in more cases
where it isn't needed, including when linked from Rust's libstd.
Differential Revision: https://reviews.llvm.org/D85062
This flag works in a similar way to the ELF linker in that it
will resolve any defined symbols to their local definition with
a shared library or -pie executable.
This flag has no effect on static linking.
Differential Revision: https://reviews.llvm.org/D89152
Similar to D66992.
In GNU ld, a -u specified symbol is a STB_DEFAULT undefined.
It cannot be changed to STB_WEAK by a later STB_WEAK undefined in a regular object file.
The behavior is consistent with our model because -u means "we need to fetch a lazy definition".
It should not be altered just because there is also a STB_WEAK undefined.
Note, our -u semantics are still different from GNU ld (https://github.com/ClangBuiltLinux/linux/issues/515):
we don't force the specified symbol to appear in .symtab This is a deliberate decision.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D88945
If a version is specified both with --{major,minor}-subsystem-version and
with --subsystem <name>:<version>, the one specified last (that actually
sets a version) takes precedance in GNU ld; thus doing the same here.
Differential Revision: https://reviews.llvm.org/D88804
As they can be set independently after D88802, we can get rid of a bit
of extra code - simplifying the logic here before adding more
complication to it later.
Differential Revision: https://reviews.llvm.org/D88803
The MinGW driver has separate options for OS and subsystem version.
Having this available in lld-link allows the MinGW driver to both match
GNU ld better and simplifies the code for merging two (potentially
mismatching) arguments into one.
Differential Revision: https://reviews.llvm.org/D88802
Parse the components as decimal, instead of decuding the base from
the string. This avoids ambiguity if the second number contains leading
zeros, which previously were parsed as indicating an octal number.
MS link.exe doesn't support hexadecimal numbers in the version numbers,
neither in /version nor in /subsystem.
Differential Revision: https://reviews.llvm.org/D88801
This adds the following two new lines to /summary:
21351 Input OBJ files (expanded from all cmd-line inputs)
61 PDB type server dependencies
38 Precomp OBJ dependencies
1420669231 Input type records <<<<
78665073382 Input type records bytes <<<<
8801393 Merged TPI records
3177158 Merged IPI records
59194 Output PDB strings
71576766 Global symbol records
25416935 Module symbol records
2103431 Public symbol records
Differential Revision: https://reviews.llvm.org/D88703
Before this patch /summary was crashing with some .PCH.OBJ files, because tpiMap[srcIdx++] was reading at the wrong location. When the TpiSource depends on a .PCH.OBJ file, the types should be offset by the previously merged PCH.OBJ set of indices.
Differential Revision: https://reviews.llvm.org/D88678
Add Thread Local Storage support for the 34 bit relocation R_PPC64_GOT_TLSGD_PCREL34 used in General Dynamic.
The compiler will produce code that looks like:
```
pla r3, x@got@tlsgd@pcrel R_PPC64_GOT_TLSGD_PCREL34
bl __tls_get_addr@notoc(x@tlsgd) R_PPC64_TLSGD
R_PPC64_REL24_NOTOC
```
LLD should be able to correctly compute the relocation for R_PPC64_GOT_TLSGD_PCREL34 as well as do the following two relaxations where possible:
General Dynamic to Local Exec:
```
paddi r3, r13, x@tprel
nop
```
and General Dynamic to Initial Exec:
```
pld r3, x@got@tprel@pcrel
add r3, r3, r13
```
Note:
This patch adds support for the PC Relative (no TOC) version of General Dynamic on top of the existing support for the TOC version of General Dynamic.
The ABI does not provide any way to tell by looking only at the relocation `R_PPC64_TLSGD` when it is being used in a TOC instruction sequence or and when it is being used in a no TOC sequence. The TOC sequence should always be 4 byte aligned. This patch adds one to the offset of the relocation when it is being used in a no TOC sequence. In this way LLD can tell by looking at the alignment of the offset of `R_PPC64_TLSGD` whether or not it is being used as part of a TOC or no TOC sequence.
Reviewed By: NeHuang, sfertile, MaskRay
Differential Revision: https://reviews.llvm.org/D87318
Add Thread Local Storage support for the 34 bit relocation R_PPC64_GOT_TLSGD_PCREL34 used in General Dynamic.
The compiler will produce code that looks like:
```
pla r3, x@got@tlsgd@pcrel R_PPC64_GOT_TLSGD_PCREL34
bl __tls_get_addr@notoc(x@tlsgd) R_PPC64_TLSGD
R_PPC64_REL24_NOTOC
```
LLD should be able to correctly compute the relocation for R_PPC64_GOT_TLSGD_PCREL34 as well as do the following two relaxations where possible:
General Dynamic to Local Exec:
```
paddi r3, r13, x@tprel
nop
```
and General Dynamic to Initial Exec:
```
pld r3, x@got@tprel@pcrel
add r3, r3, r13
```
Note:
This patch adds support for the PC Relative (no TOC) version of General Dynamic on top of the existing support for the TOC version of General Dynamic.
The ABI does not provide any way to tell by looking only at the relocation `R_PPC64_TLSGD` when it is being used in a TOC instruction sequence or and when it is being used in a no TOC sequence. The TOC sequence should always be 4 byte aligned. This patch adds one to the offset of the relocation when it is being used in a no TOC sequence. In this way LLD can tell by looking at the alignment of the offset of `R_PPC64_TLSGD` whether or not it is being used as part of a TOC or no TOC sequence.
Reviewed By: NeHuang, sfertile, MaskRay
Differential Revision: https://reviews.llvm.org/D87318
When adding an archive member with a problem, e.g. a new bitcode with an
old archiver, containing an unsupported attribute, or an ELF file with a
malformed symbol table, the archiver would throw away the error and
simply add the member to the archive without any symbol entries. This
meant that the resultant archive could be silently unusable when not
using --whole-archive, and result in unexpected undefined symbols.
This change fixes this issue by addressing two FIXMEs and only throwing
away not-an-object errors. However, this meant that some LLD tests which
didn't need symbol tables and were using invalid members deliberately to
test the linker's malformed input handling no longer worked, so this
patch also stops the archiver from looking for symbols in an object if
it doesn't require a symbol table, and updates the tests accordingly.
Differential Revision: https://reviews.llvm.org/D88288
Reviewed by: grimar, rupprecht, MaskRay
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
The routing rules are:
sym -> __wrap_sym
__real_sym -> sym
__wrap_sym and sym are routing targets, so they need to be exposed to the symbol
table. __real_sym is not and can be eliminated if not used by regular object.
This adds support for new-style command support. In this mode, all exports
are considered command entrypoints, and the linker inserts calls to
`__wasm_call_ctors` and `__wasm_call_dtors` for all such entrypoints.
This enables support for:
- Command entrypoints taking arguments other than strings and return values
other than `int`.
- Multicall executables without requiring on the use of string-based
command-line arguments.
This new behavior is disabled when the input has an explicit call to
`__wasm_call_ctors`, indicating code not expecting new-style command
support.
This change does mean that wasm-ld no longer supports DCE-ing the
`__wasm_call_ctors` function when there are no calls to it. If there are no
calls to it, and there are ctors present, we assume it's wasm-ld's job to
insert the calls. This seems ok though, because if there are ctors present,
the program is expecting them to be called. This change affects the
init-fini-gc.ll test.
In particular allow explict exporting of `__stack_pointer` but
exclud this from `--export-all` to avoid requiring the mutable
globals feature whenenve `--export-all` is used.
This uncovered a bug in populateTargetFeatures regarding checking
if the mutable-globals feature is allowed.
See: https://github.com/WebAssembly/binaryen/issues/2934
Differential Revision: https://reviews.llvm.org/D88506
Stored Error objects have to be checked, even if they are success
values.
This reverts commit 8d250ac3cd.
Relands commit 49b3459930655d879b2dc190ff8fe11c38a8be5f..
Original commit message:
-----------------------------------------
This makes type merging much faster (-24% on chrome.dll) when multiple
threads are available, but it slightly increases the time to link (+10%)
when /threads:1 is passed. With only one more thread, the new type
merging is faster (-11%). The output PDB should be identical to what it
was before this change.
To give an idea, here is the /time output placed side by side:
BEFORE | AFTER
Input File Reading: 956 ms | 968 ms
Code Layout: 258 ms | 190 ms
Commit Output File: 6 ms | 7 ms
PDB Emission (Cumulative): 6691 ms | 4253 ms
Add Objects: 4341 ms | 2927 ms
Type Merging: 2814 ms | 1269 ms -55%!
Symbol Merging: 1509 ms | 1645 ms
Publics Stream Layout: 111 ms | 112 ms
TPI Stream Layout: 764 ms | 26 ms trivial
Commit to Disk: 1322 ms | 1036 ms -300ms
----------------------------------------- --------
Total Link Time: 8416 ms 5882 ms -30% overall
The main source of the additional overhead in the single-threaded case
is the need to iterate all .debug$T sections up front to check which
type records should go in the IPI stream. See fillIsItemIndexFromDebugT.
With changes to the .debug$H section, we could pre-calculate this info
and eliminate the need to do this walk up front. That should restore
single-threaded performance back to what it was before this change.
This change will cause LLD to be much more parallel than it used to, and
for users who do multiple links in parallel, it could regress
performance. However, when the user is only doing one link, it's a huge
improvement. In the future, we can use NT worker threads to avoid
oversaturating the machine with work, but for now, this is such an
improvement for the single-link use case that I think we should land
this as is.
Algorithm
----------
Before this change, we essentially used a
DenseMap<GloballyHashedType, TypeIndex> to check if a type has already
been seen, and if it hasn't been seen, insert it now and use the next
available type index for it in the destination type stream. DenseMap
does not support concurrent insertion, and even if it did, the linker
must be deterministic: it cannot produce different PDBs by using
different numbers of threads. The output type stream must be in the same
order regardless of the order of hash table insertions.
In order to create a hash table that supports concurrent insertion, the
table cells must be small enough that they can be updated atomically.
The algorithm I used for updating the table using linear probing is
described in this paper, "Concurrent Hash Tables: Fast and General(?)!":
https://dl.acm.org/doi/10.1145/3309206
The GHashCell in this change is essentially a pair of 32-bit integer
indices: <sourceIndex, typeIndex>. The sourceIndex is the index of the
TpiSource object, and it represents an input type stream. The typeIndex
is the index of the type in the stream. Together, we have something like
a ragged 2D array of ghashes, which can be looked up as:
tpiSources[tpiSrcIndex]->ghashes[typeIndex]
By using these side tables, we can omit the key data from the hash
table, and keep the table cell small. There is a cost to this: resolving
hash table collisions requires many more loads than simply looking at
the key in the same cache line as the insertion position. However, most
supported platforms should have a 64-bit CAS operation to update the
cell atomically.
To make the result of concurrent insertion deterministic, the cell
payloads must have a priority function. Defining one is pretty
straightforward: compare the two 32-bit numbers as a combined 64-bit
number. This means that types coming from inputs earlier on the command
line have a higher priority and are more likely to appear earlier in the
final PDB type stream than types from an input appearing later on the
link line.
After table insertion, the non-empty cells in the table can be copied
out of the main table and sorted by priority to determine the ordering
of the final type index stream. At this point, item and type records
must be separated, either by sorting or by splitting into two arrays,
and I chose sorting. This is why the GHashCell must contain the isItem
bit.
Once the final PDB TPI stream ordering is known, we need to compute a
mapping from source type index to PDB type index. To avoid starting over
from scratch and looking up every type again by its ghash, we save the
insertion position of every hash table insertion during the first
insertion phase. Because the table does not support rehashing, the
insertion position is stable. Using the array of insertion positions
indexed by source type index, we can replace the source type indices in
the ghash table cells with the PDB type indices.
Once the table cells have been updated to contain PDB type indices, the
mapping for each type source can be computed in parallel. Simply iterate
the list of cell positions and replace them with the PDB type index,
since the insertion positions are no longer needed.
Once we have a source to destination type index mapping for every type
source, there are no more data dependencies. We know which type records
are "unique" (not duplicates), and what their final type indices will
be. We can do the remapping in parallel, and accumulate type sizes and
type hashes in parallel by type source.
Lastly, TPI stream layout must be done serially. Accumulate all the type
records, sizes, and hashes, and add them to the PDB.
Differential Revision: https://reviews.llvm.org/D87805
This makes type merging much faster (-24% on chrome.dll) when multiple
threads are available, but it slightly increases the time to link (+10%)
when /threads:1 is passed. With only one more thread, the new type
merging is faster (-11%). The output PDB should be identical to what it
was before this change.
To give an idea, here is the /time output placed side by side:
BEFORE | AFTER
Input File Reading: 956 ms | 968 ms
Code Layout: 258 ms | 190 ms
Commit Output File: 6 ms | 7 ms
PDB Emission (Cumulative): 6691 ms | 4253 ms
Add Objects: 4341 ms | 2927 ms
Type Merging: 2814 ms | 1269 ms -55%!
Symbol Merging: 1509 ms | 1645 ms
Publics Stream Layout: 111 ms | 112 ms
TPI Stream Layout: 764 ms | 26 ms trivial
Commit to Disk: 1322 ms | 1036 ms -300ms
----------------------------------------- --------
Total Link Time: 8416 ms 5882 ms -30% overall
The main source of the additional overhead in the single-threaded case
is the need to iterate all .debug$T sections up front to check which
type records should go in the IPI stream. See fillIsItemIndexFromDebugT.
With changes to the .debug$H section, we could pre-calculate this info
and eliminate the need to do this walk up front. That should restore
single-threaded performance back to what it was before this change.
This change will cause LLD to be much more parallel than it used to, and
for users who do multiple links in parallel, it could regress
performance. However, when the user is only doing one link, it's a huge
improvement. In the future, we can use NT worker threads to avoid
oversaturating the machine with work, but for now, this is such an
improvement for the single-link use case that I think we should land
this as is.
Algorithm
----------
Before this change, we essentially used a
DenseMap<GloballyHashedType, TypeIndex> to check if a type has already
been seen, and if it hasn't been seen, insert it now and use the next
available type index for it in the destination type stream. DenseMap
does not support concurrent insertion, and even if it did, the linker
must be deterministic: it cannot produce different PDBs by using
different numbers of threads. The output type stream must be in the same
order regardless of the order of hash table insertions.
In order to create a hash table that supports concurrent insertion, the
table cells must be small enough that they can be updated atomically.
The algorithm I used for updating the table using linear probing is
described in this paper, "Concurrent Hash Tables: Fast and General(?)!":
https://dl.acm.org/doi/10.1145/3309206
The GHashCell in this change is essentially a pair of 32-bit integer
indices: <sourceIndex, typeIndex>. The sourceIndex is the index of the
TpiSource object, and it represents an input type stream. The typeIndex
is the index of the type in the stream. Together, we have something like
a ragged 2D array of ghashes, which can be looked up as:
tpiSources[tpiSrcIndex]->ghashes[typeIndex]
By using these side tables, we can omit the key data from the hash
table, and keep the table cell small. There is a cost to this: resolving
hash table collisions requires many more loads than simply looking at
the key in the same cache line as the insertion position. However, most
supported platforms should have a 64-bit CAS operation to update the
cell atomically.
To make the result of concurrent insertion deterministic, the cell
payloads must have a priority function. Defining one is pretty
straightforward: compare the two 32-bit numbers as a combined 64-bit
number. This means that types coming from inputs earlier on the command
line have a higher priority and are more likely to appear earlier in the
final PDB type stream than types from an input appearing later on the
link line.
After table insertion, the non-empty cells in the table can be copied
out of the main table and sorted by priority to determine the ordering
of the final type index stream. At this point, item and type records
must be separated, either by sorting or by splitting into two arrays,
and I chose sorting. This is why the GHashCell must contain the isItem
bit.
Once the final PDB TPI stream ordering is known, we need to compute a
mapping from source type index to PDB type index. To avoid starting over
from scratch and looking up every type again by its ghash, we save the
insertion position of every hash table insertion during the first
insertion phase. Because the table does not support rehashing, the
insertion position is stable. Using the array of insertion positions
indexed by source type index, we can replace the source type indices in
the ghash table cells with the PDB type indices.
Once the table cells have been updated to contain PDB type indices, the
mapping for each type source can be computed in parallel. Simply iterate
the list of cell positions and replace them with the PDB type index,
since the insertion positions are no longer needed.
Once we have a source to destination type index mapping for every type
source, there are no more data dependencies. We know which type records
are "unique" (not duplicates), and what their final type indices will
be. We can do the remapping in parallel, and accumulate type sizes and
type hashes in parallel by type source.
Lastly, TPI stream layout must be done serially. Accumulate all the type
records, sizes, and hashes, and add them to the PDB.
Differential Revision: https://reviews.llvm.org/D87805
They operate like Defined symbols but with no associated InputSection.
Note that `ld64` seems to treat the weak definition flag like a no-op for
absolute symbols, so I have replicated that behavior.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D87909
Apparently this is used in real programs. I've handled this by reusing
the logic we already have for branch (function call) relocations.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D87852
Not 100% sure but it appears that bundles are almost identical to
dylibs, aside from the fact that they do not contain `LC_ID_DYLIB`. ld64's code
seems to treat bundles and dylibs identically in most places.
Supporting bundles allows us to run e.g. XCTests, as all test suites are
compiled into bundles which get dynamically loaded by the `xctest` test runner.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D87856
* Implement rebase opcodes. Rebase opcodes tell dyld where absolute
addresses have been encoded in the binary. If the binary is not loaded
at its preferred address, dyld has to rebase these addresses by adding
an offset to them.
* Support `-pie` and use it to test rebase opcodes.
This is necessary for absolute address references in dylibs, bundles etc
to work.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D87199
The R2 save stub will now support offsets up to 64 bits.
There are three cases that will be used.
1) The offset fits in 26 bits.
```
b <26 bit offset>
```
2) The offset does not fit in 26 bits but fits in 34 bits.
```
paddi r12, 0, <34 bit offset>, 1
mtctr r12
bctr
```
3) The offset does not fit in 34 bits. Since this is an R2 save stub we can use
the TOC in R2. We are not loading the offset but the actual address we want to
branch to.
```
addis r12, r2, <address in TOC lo>
ld r12 <address in TOC hi>(r12)
mtctr r12
bctr
```
In case 1) the stub is only 8 bytes while in cases 2) and 3) the stub will be
20 bytes.
Reviewed By: MaskRay, sfertile, NeHuang
Differential Revision: https://reviews.llvm.org/D87916
https://github.com/WebAssembly/threads/issues/144 updated the
WebAssembly threads proposal to make atomic operations on unshared memories
valid. This change updates the feature checking in the linker accordingly.
Production WebAssembly engines have recently been updated to allow this
behvaior, but after this change users who accidentally use atomics with unshared
memories on older versions of the engines will get validation errors at runtime
rather than link errors.
Differential Revision: https://reviews.llvm.org/D79530
".text.split." holds symbols which are split out from functions in
other input sections. For example, with -fsplit-machine-functions,
placing the cold parts in .text.split instead of .text.unlikely mitigates
against poor profile inaccuracy. Techniques such as hugepage remapping can
make conservative decisions at the section granularity.
Differential Revision: https://reviews.llvm.org/D87840
In lit tests, we run each LLD invocation twice (LLD_IN_TEST=2), without shutting down the process in-between. This ensures a full cleanup is properly done between runs.
Only active for the COFF driver for now. Other drivers still use LLD_IN_TEST=1 which executes just one iteration with full cleanup, like before.
When the environment variable LLD_IN_TEST is unset, a shortcut is taken, only one iteration is executed, no cleanup for faster exit, like before.
A public API, lld::safeLldMain(), is also available when using LLD as a library.
Differential Revision: https://reviews.llvm.org/D70378
Before this patch, these two tests were emitting both a .DLL and .LIB. The output .LIB file name also happens to be an input .LIB file name. This prevented the test from executing a second time when LLD is re-entrant (LLD_IN_TEST=2).
This is a support patch for https://reviews.llvm.org/D70378.
This patch expands two LTO test cases to check other aspects.
1) weak.ll has been expanded to show that it doesn't matter whether the
first appearance of a weak symbol appears in a bitcode file or native
object - that one is picked.
2) reproduce-lto.ll has been expanded to show that the bitcode files are
stored in the reproduce package and that intermediate files (such as
the LTO-compiled object) are not.
Differential Revision: https://reviews.llvm.org/D88094
Reviewed by: grimar, MaskRay