These symbols are somewhat interesting in that they create non-existing
segments, which as far as I know is the only way to create segments
that don't contain any sections.
Final part of part of PR50760. Like D106629, but for segments instead
of sections. I'm not aware of anything that needs this in practice.
Differential Revision: https://reviews.llvm.org/D106767
segment$start$/segment$end$ symbols allow creating segments without
sections, so getting the segment address off the first section
won't work there. Storing the address on the segment is arguably a
bit simpler too.
No behavior change, part of PR50760.
Differential Revision: https://reviews.llvm.org/D106665
We make it less than INT_MAX in order not to conflict with the ordering
of zerofill sections, which must always be placed at the end of their
segment.
This is the more structural fix for the issue addressed in {D104596}.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D104607
This diff paves the way for {D102964} which adds a new kind of
InputSection.
We previously maintained section ordering implicitly: we created
InputSections as we parsed each file in command-line order, and passed
on this ordering when we created OutputSections and OutputSegments by
iterating over these InputSections. The implicitness of the ordering
made it difficult to refactor the code to e.g. handle a new type of
InputSection. As such, I've codified the ordering explicitly via
`inputOrder` fields. This also allows us to use `sort` instead of
`stable_sort`.
Benchmarking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.23 4.35 4.27 4.274 0.030157481
+ 20 4.24 4.38 4.27 4.2815 0.033759989
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D102972
As preparation for a subsequent diff that implements builtin section renaming, define more `constexpr` strings in namespaces `lld::macho::segment_names` and `lld::macho::section_names`, and use them to replace string literals.
Differential Revision: https://reviews.llvm.org/D101393
codesign/libstuff checks that the `__LLVM` segment is directly
before `__LINKEDIT` by checking that `fileOff + fileSize == next segment
fileOff`. Previously, there would be gaps between the segments due to
the fact that their fileOffs are page-aligned but their fileSizes
aren't. In order to satisfy codesign, we page-align fileOff *before*
calculating fileSize. (I don't think codesign checks for the relative
ordering of other segments, so in theory we could do this just for
`__LLVM`, but ld64 seems to do it for all segments.)
Note that we *don't* round up the fileSize of the `__LINKEDIT` segment.
Since it's the last segment, it doesn't need to worry about contiguity;
in addition, codesign checks that the last (hidden) section in
`__LINKEDIT` covers the last byte of the segment, so if we rounded up
`__LINKEDIT`'s size we would have to do the same for its last section,
which is a bother.
While at it, I also addressed a FIXME in the linkedit-contiguity.s test
to cover more `__LINKEDIT` sections.
Reviewed By: #lld-macho, thakis, alexshap
Differential Revision: https://reviews.llvm.org/D100848
This diff creates an empty XAR file and copies it into
`__LLVM,__bundle`. Follow-up work will actually populate the contents of
that XAR.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D100650
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
Digest the input `__LD,__compact_unwind` and produce the output `__TEXT,__unwind_info`. This is the initial commit with the major functionality.
Successor commits will add handling for ...
* `__TEXT,__eh_frame`
* personalities & LSDA
* `-r` pass-through
Differential Revision: https://reviews.llvm.org/D86805
Summary:
There were a few issues with the previous setup:
1. The section sorting comparator used a declarative map of section names to
determine the correct order, but it turns out we need to match on more than
just names -- in particular, an upcoming diff will sort based on whether the
S_ZERO_FILL flag is set. This diff changes the sorter to a more imperative but
flexible form.
2. We were sorting OutputSections stored in a MapVector, which left the
MapVector in an inconsistent state -- the wrong keys map to the wrong values!
In practice, we weren't doing key lookups (only container iteration) after the
sort, so this was fine, but it was still a dubious state of affairs. This diff
copies the OutputSections to a vector before sorting them.
3. We were adding unneeded OutputSections to OutputSegments and then filtering
them out later, which meant that we had to remember whether an OutputSegment
was in a pre- or post-filtered state. This diff only adds the sections to the
segments if they are needed.
In addition to those major changes, two minor ones worth noting:
1. I renamed all OutputSection variable names to `osec`, to parallel `isec`.
Previously we were using some inconsistent combination of `osec`, `os`, and
`section`.
2. I added a check (and a test) for InputSections with names that clashed with
those of our synthetic OutputSections.
Reviewers: #lld-macho
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81887
The order file indicates how input sections should be sorted within each
output section, based on the symbols contained within those sections.
This diff sets the stage for implementing and testing
`.subsections_via_symbols`, where we will break up InputSections by each
symbol and sort them more granularly.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D79668
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
Summary:
1. Don't have isHidden() depend on isNeeded(). Whether a section is
hidden is orthogonal from whether it is needed: hidden sections will
never have a header regardless of whether they have a body. (I know we
override this method with return false for synthetic sections, but
regardless I think it's confusing to write it this way for non-synthetic
sections.)
2. Don't call writeTo() on unneeded sections. D78270 assumes that this
is true when implementing the stub helper section.
3. Filter out the unneeded sections early on to avoid having to deal
with them in multiple places.
4. Remove assumption in test that the referenced file has no other symbols.
(We should create separate input files for future tests to avoid such
issues.)
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79460
Summary: Similar to other formats, input sections in the MachO
implementation are now grouped under output sections. This is primarily
a refactor, although there's some new logic (like resolving the output
section's flags based on its inputs).
Differential Revision: https://reviews.llvm.org/D77893
Previously, the special segments `__PAGEZERO` and `__LINKEDIT` were
implemented as special LoadCommands. This diff implements them using
special sections instead which have an `isHidden()` attribute. We do not
emit section headers for hidden sections, but we use their addresses and
file offsets to determine that of their containing segments. In addition
to allowing us to share more segment-related code, this refactor is also
important for the next step of emitting dylibs:
1) dylibs don't have segments like __PAGEZERO, so we need an easy way of
omitting them w/o messing up segment indices
2) Unlike the kernel, which is happy to run an executable with
out-of-order segments, dyld requires dylibs to have their segment
load commands arranged in increasing address order. The refactor
makes it easier to implement sorting of sections and segments.
Differential Revision: https://reviews.llvm.org/D76839
This diff implements:
* dylib loading (much of which is being restored from @pcc and @ruiu's
original work)
* The GOT_LOAD relocation, which allows us to load non-lazy dylib
symbols
* Basic bind opcode emission, which tells `dyld` how to populate the GOT
Differential Revision: https://reviews.llvm.org/D76252
Summary:
This is the first commit for the new Mach-O backend, designed to roughly
follow the architecture of the existing ELF and COFF backends, and
building off work that @ruiu and @pcc did in a branch a while back. Note
that this is a very stripped-down commit with the bare minimum of
functionality for ease of review. We'll be following up with more diffs
soon.
Currently, we're able to generate a simple "Hello World!" executable
that runs on OS X Catalina (and possibly on earlier OS X versions; I
haven't tested them). (This executable can be obtained by compiling
`test/MachO/relocations.s`.) We're mocking out a few load commands to
achieve this -- for example, we can't load dynamic libraries, but
Catalina requires binaries to be linked against `dyld`, so we hardcode
the emission of a `LC_LOAD_DYLIB` command. Other mocked out load
commands include LC_SYMTAB and LC_DYSYMTAB.
Differential Revision: https://reviews.llvm.org/D75382