As Roman Tereshin pointed out in https://reviews.llvm.org/D45541, the
-global-isel option is redundant when -run-pass is given. -global-isel sets up
the GlobalISel passes in the pass manager but -run-pass skips that entirely and
configures it's own pipeline.
llvm-svn: 331603
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
artifacts along with DCE
Legalization Artifacts are all those insts that are there to make the
type system happy. Currently, the target needs to say all combinations
of extends and truncs are legal and there's no way of verifying that
post legalization, we only have *truly* legal instructions. This patch
changes roughly the legalization algorithm to process all illegal insts
at one go, and then process all truncs/extends that were added to
satisfy the type constraints separately trying to combine trivial cases
until they converge. This has the added benefit that, the target
legalizerinfo can only say which truncs and extends are okay and the
artifact combiner would combine away other exts and truncs.
Updated legalization algorithm to roughly the following pseudo code.
WorkList Insts, Artifacts;
collect_all_insts_and_artifacts(Insts, Artifacts);
do {
for (Inst in Insts)
legalizeInstrStep(Inst, Insts, Artifacts);
for (Artifact in Artifacts)
tryCombineArtifact(Artifact, Insts, Artifacts);
} while(!Insts.empty());
Also, wrote a simple wrapper equivalent to SetVector, except for
erasing, it avoids moving all elements over by one and instead just
nulls them out.
llvm-svn: 318210
This updates the MIRPrinter to include the regclass when printing
virtual register defs, which is already valid syntax for the
parser. That is, given 64 bit %0 and %1 in a "gpr" regbank,
%1(s64) = COPY %0(s64)
would now be written as
%1:gpr(s64) = COPY %0(s64)
While this change alone introduces a bit of redundancy with the
registers block, it allows us to update the tests to be more concise
and understandable and brings us closer to being able to remove the
registers block completely.
Note: We generally only print the class in defs, but there is one
exception. If there are uses without any defs whatsoever, we'll print
the class on all uses. I'm not completely convinced this comes up in
meaningful machine IR, but for now the MIRParser and MachineVerifier
both accept that kind of stuff, so we don't want to have a situation
where we can print something we can't parse.
llvm-svn: 316479
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
Mostly this just means changing the triple from aarch64-apple-ios to the generic
aarch64--. Only one test needs more significant changes, but GlobalISel already
does the right thing so it's ok to just change the checks.
Differential Revision: https://reviews.llvm.org/D25532
llvm-svn: 284223
Some generic instructions have multiple types. While in theory these always be
discovered by inspecting the single definition of each generic vreg, in
practice those definitions won't always be local and traipsing through a big
function to find them will not be fun.
So this changes MIRPrinter to print out the type of uses as well as defs, if
they're known to be different or not known to be the same.
On the parsing side, we're a little more flexible: provided each register is
given a type in at least one place it's mentioned (and all types are
consistent) we accept the MIR. This doesn't introduce ambiguity but makes
writing tests manually a bit less painful.
llvm-svn: 281204
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
More preparation for dropping source types from MachineInstrs: regsters coming
out of already-selected code (i.e. non-generic instructions) don't have a type,
but that information is needed so we must add it manually.
This is done via a new G_TYPE instruction.
llvm-svn: 280292