Enums without an explicit, fixed, underlying type are implicitly given a
fixed 'int' type for ABI compatibility with MSVC. However, we can
enforce the standard-mandated rules on these types as-if we didn't know
this fact if the tag is not part of a definition.
llvm-svn: 249667
No ABI for C++ currently makes it possible to implement the standard
100% perfectly. We wrongly hid some of our compatible behavior behind
-fms-compatibility instead of tying it to the compiler ABI.
llvm-svn: 249656
With this change, most 'g' options are rejected by CompilerInvocation.
They remain only as Driver options. The new way to request debug info
from cc1 is with "-debug-info-kind={line-tables-only|limited|standalone}"
and "-dwarf-version={2|3|4}". In the absence of a command-line option
to specify Dwarf version, the Toolchain decides it, rather than placing
Toolchain-specific logic in CompilerInvocation.
Also fix a bug in the Windows compatibility argument parsing
in which the "rightmost argument wins" principle failed.
Differential Revision: http://reviews.llvm.org/D13221
llvm-svn: 249655
the "" and the suffix; that breaks names such as 'operator""if'. For symmetry,
also remove the space between the 'operator' and the '""'.
llvm-svn: 249641
The backend restores the stack pointer after recovering from an
exception. This is similar to r245879, but it doesn't try to use the
normal cleanup mechanism, so hopefully it won't cause the same breakage.
llvm-svn: 249640
We don't have a good place to put them. Our previous spot was causing us
to optimize loads from the exception object to undef, because it was
after the catchpad instruction that models the write to the catch
object.
llvm-svn: 249616
AllCallbacks is currently only used to call onStartOfTranslationUnit and
onEndOfTranslationUnit on them. In this (and any other scenario I can
come up with), it is important (or at least better) not to have
duplicates in this container. E.g. currently onEndOfTranslationUnit is
called repeatedly on the same callback for every matcher that is
registered with it.
llvm-svn: 249598
Fixes this bug: https://llvm.org/bugs/show_bug.cgi?id=24504
TokenAnnotator::spaceRequiredBetween was handling TT_ForEachMacro but
not TT_ObjCForIn, so lines that look like:
for (id nextObject in (NSArray *)myArray)
would incorrectly turn into:
for (id nextObject in(NSArray *)myArray)
Patch by Kent Sutherland, thank you.
llvm-svn: 249553
aligning assignments.
This was done correctly when aligning the declarations, but not when
aligning assignments.
FIXME: The code between assignments and declarations alignment is
roughly duplicated and
would benefit from factorization.
Bug 25090: https://llvm.org/bugs/show_bug.cgi?id=25090
Patch by Beren Minor. Thank you.
llvm-svn: 249552
Currently codegen crashes trying to emit casting to bool &. It happens because bool type is converted to i1 and later then lvalue for reference is converted to i1*. But when codegen tries to load this lvalue it crashes trying to load value from this i1*.
Differential Revision: http://reviews.llvm.org/D13325
llvm-svn: 249534
- Rename it to RedirectingFileSystem. This is what it does, YAML is just a
serialization format for it.
- Consistently use unique_ptr for memory management.
No functional change intended.
llvm-svn: 249532
ASTUnit was creating multiple FileManagers and throwing them away. Reuse
the one from Tooling. No functionality change now but necessary for
VFSifying tooling.
llvm-svn: 249410
It took me some time to figure out why this is not working as expected:
std:error_code converts to true if there is an error. This means we never
ever took the generated absolute path, which happens to be the right thing
anyways as it properly works with virtual files. Just remove the whole
thing, relative paths are covered by existing tooling tests.
llvm-svn: 249408
This was made much easier by introducing an IncludeCategory struct to
replace the previously used std::pair.
Also, cleaned up documentation and added examples.
llvm-svn: 249392
Adds `addTargetAndModeForProgramName`, a utility function that will add
appropriate `-target foo` and `--driver-mode=g++` tokens to a command
line for driver invocations of the form `a/b/foo-g++`. It is intended to
support tooling: for example, should a compilation database record some
invocation of `foo-g++` without these implicit flags, a Clang tool may
use this function to add them back.
Patch by Luke Zarko.
llvm-svn: 249391
Apart from being cleaner this also means that clang-format no longer has
access to the host file system. This isn't necessary because clang-format
never reads includes :)
Includes minor tweaks and bugfixes found in the VFS implementation while
running clang-format tests.
llvm-svn: 249385
that change turns out to not be reasonable: mutating the AST of a parsed
template during instantiation is not a sound thing to do, does not work across
chained PCH / modules builds, and is in any case a special-case workaround to a
more general problem that should be solved centrally.
llvm-svn: 249342
include/clang/CodeGenABITypes.h is in meant to be included by external
users, but using a unique_ptr on the private CodeGenModule introduces a
dependency on the type definition that prevents such a use.
NFC
llvm-svn: 249328
For RealFileSystem this is getcwd()/chdir(), the synthetic file systems can
make up one for themselves. OverlayFileSystem now synchronizes the working
directories when a new FS is added to the overlay or the overlay working
directory is set. This allows purely artificial file systems that have zero
ties to the underlying disks.
Differential Revision: http://reviews.llvm.org/D13430
llvm-svn: 249316
This is a simple file system tree of memory buffers that can be filled by a
client. In conjunction with an OverlayFS it can be used to make virtual
files accessible right next to physical files. This can be used as a
replacement for the virtual file handling in FileManager and which I intend
to remove eventually.
llvm-svn: 249315
OpenCL v1.1 s6.2.2: for the boolean value true, every bit in the result vector should be set.
This change treats the i1 value as signed for the purposes of performing the cast to integer,
and therefore sign extend into the result.
Patch by Neil Hickey!
http://reviews.llvm.org/D13349
llvm-svn: 249301
r249137 added support for the new mips-mti-linux toolchain. However,
the new tests of that commit, broke some buildbots because they didn't use
the correct regular expressions to capture the filename of Clang & LLD.
This commit re-applies the changes of r249137 and fixes the tests in
r249137 in order to match the filenames of the Clang and LLD executable.
llvm-svn: 249294
In versions of clang prior to r238238, __declspec was recognized as a keyword in
all modes. It was then changed to only be enabled when Microsoft or Borland
extensions were enabled (and for CUDA, as a temporary measure). There is a
desire to support __declspec in Playstation code, and possibly other
environments. This commit adds a command-line switch to allow explicit
enabling/disabling of the recognition of __declspec as a keyword. Recognition
is enabled by default in Microsoft, Borland, CUDA, and PS4 environments, and
disabled in all other environments.
Patch by Warren Ristow!
llvm-svn: 249279
Diagnose when a pointer to const T is used as the first argument in at atomic
builtin unless that builtin is a load operation. This is already checked for
C11 atomics builtins but not for __atomic ones.
This patch was given the LGTM by rsmith when it was part
of a larger review. (See http://reviews.llvm.org/D10407)
llvm-svn: 249252
The Windows on ARM ABI recommends that FPO be disabled. This is since the
Windows on ARM ABI uses the FP for fast stack walking. By paying the slight
cost of the loss of registers, a much faster backtrace is possible by using the
frame pointer since the pdata need not be consulted. Furthermore, even if pdata
is not available, you can still more easily reconstruct the stack.
llvm-svn: 249227
I randomly came across this difference between AArch64 and other targets:
on the latter, we don't emit nil checks for known non-nil class method
calls thanks to r247350, but we still do for AArch64 stret calls.
They use different code paths, because those are special, as they go
through the regular msgSend, not the msgSend*_stret variants.
llvm-svn: 249205
Ensure that the vptr store in the most-derived constructor is not behind
an invariant group barrier. Previously, the base-most vptr store would
be the one behind no barrier, and that could result in the creator of
the object thinking it had the base-most vtable.
This bug caused clang call pure virtual functions when called from
constructor body.
http://reviews.llvm.org/D13373
llvm-svn: 249197
All global variables that are not enclosed in a declare target region
must be captured in the target region as local variables do. Currently,
there is no support for declare target, so this patch adds support for
capturing all the global variables used in a the target region.
llvm-svn: 249154
This patch implements the outlining for offloading functions for code
annotated with the OpenMP target directive. It uses a temporary naming
of the outlined functions that will have to be updated later on once
target side codegen and registration of offloading libraries is
implemented - the naming needs to be made unique in the produced
library.
llvm-svn: 249148
Reapply r248935.
Usually, when using LTO with a clang installation newer than the
system's one, there's a libLTO.dylib version mismatch and LTO fails. One
solution to this is to make ld point to the right libLTO.dylib by
changing DYLD_LIBRARY_PATH.
However, ld64 supports specifying the complete path to the desired
libLTO.dylib through the -lto_library option. This commit adds support
for the clang driver to use this option whenever it's capable of finding
a libLTO.dylib in clang's installed library directory. This way, we
don't need to rely on DYLD_LIBRARY_PATH nor get caught by version
mismatches.
Differential Revision: http://reviews.llvm.org/D13117
rdar://problem/7363476
llvm-svn: 249143
Summary:
This new toolchain uses primarily LLVM-based tools, eg. compiler-rt, lld,
libcxx, etc. Because of this, it doesn't require neither an existing GCC
installation nor a GNU environment. Ideally, in a follow-up patch we
would like to add a new --{llvm|clang}-toolchain option (similar to
--gcc-toolchain) in order to allow the use of this toolchain with
independent Clang builds. For the time being, we use the --sysroot
option just to test the correctness of the paths generated by the
driver.
Reviewers: atanasyan, dsanders, rsmith
Subscribers: jfb, tberghammer, danalbert, srhines, dschuff, cfe-commits
Differential Revision: http://reviews.llvm.org/D13340
llvm-svn: 249137
their associated .cpp file.
Previous refactorings long long ago had split out the above categories
of classes from Stmt.h into their own header files, but failed to also
split the Stmt.cpp implementation file similarly. Do so for
readability's sake.
llvm-svn: 249131
partial specialization can perform conversions on the argument. Be sure we
start again from the original argument when checking each possible template.
llvm-svn: 249114
test that our intrinsics behave the same under -fsigned-char and
-funsigned-char.
This further testing uncovered that AVX-2 has a broken cmpgt for 8-bit
elements, and has for a long time. This is fixed in the same way as
SSE4 handles the case.
The other ISA extensions currently work correctly because they use
specific instruction intrinsics. As soon as they are rewritten in terms
of generic IR, they will need to add these special casts. I've added the
necessary testing to catch this however, so we shouldn't have to chase
it down again.
I considered changing the core typedef to be signed, but that seems like
a bad idea. Notably, it would be an ABI break if anyone is reaching into
the innards of the intrinsic headers and passing __v16qi on an API
boundary. I can't be completely confident that this wouldn't happen due
to a macro expanding in a lambda, etc., so it seems much better to leave
it alone. It also matches GCC's behavior exactly.
A fun side note is that for both GCC and Clang, -funsigned-char really
does change the semantics of __v16qi. To observe this, consider:
% cat x.cc
#include <smmintrin.h>
#include <iostream>
int main() {
__v16qi a = { 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__v16qi b = _mm_set1_epi8(-1);
std::cout << (int)(a / b)[0] << ", " << (int)(a / b)[1] << '\n';
}
% clang++ -o x x.cc && ./x
-1, 1
% clang++ -funsigned-char -o x x.cc && ./x
0, 1
However, while this may be surprising, both Clang and GCC agree.
Differential Revision: http://reviews.llvm.org/D13324
llvm-svn: 249097
With -fms-extensions it is possible to have a non-class record that is a
template specialization cause an assertion failure via the call to
Type::getAsCXXRecordDecl. Fixes PR 24246.
llvm-svn: 249090
This was already being done when injecting the VBPtr, but not
when injecting the VFPtr. This fixes a number of tests in LLDB's
test suite.
Reviewed by: David Majnemer
Differential Revision: http://reviews.llvm.org/D13276
llvm-svn: 249085
Objective-C ARC lifetime qualifiers are dropped when canonicalizing
function types. Perform the same adjustment before comparing the
deduced result types of lambdas. Fixes rdar://problem/22344904.
llvm-svn: 249065
This commit supports Sean Eveson's work on loop widening. It is NFC for now.
It adds a new TK_EntireMemSpace invalidation trait that, when applied to a
MemSpaceRegion, indicates that the entire memory space should be invalidated.
Clients can add this trait before invalidating. For example:
RegionAndSymbolInvalidationTraits ITraits;
ITraits.setTrait(MRMgr.getStackLocalsRegion(STC),
RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
This commit updates the existing logic invalidating global memspace regions for
calls to additionally handle arbitrary memspaces. When generating initial
clusters during cluster analysis we now add a cluster to the worklist if
the memspace for its base is marked with TK_EntireMemSpace.
This also moves the logic for invalidating globals from ClusterAnalysis to
invalidateRegionsWorker so that it is not shared with removeDeadBindingsWorker.
There are no explicit tests with this patch -- but when applied to Sean's patch
for loop widening in http://reviews.llvm.org/D12358 and after updating his code
to set the trait, the failing tests in that patch now pass.
Differential Revision: http://reviews.llvm.org/D12993
llvm-svn: 249063
Prior to this patch, -Wtautological-overlap-compare would only warn us
if there was a sketchy logical comparison between variables and
IntegerLiterals. This patch makes -Wtautological-overlap-compare aware
of EnumConstantDecls, so it can apply the same logic to them.
llvm-svn: 249053
Summary:
This patch moves getCompilerRT() from the clang::driver::tools namespace to
the ToolChain class. This is needed for multilib toolchains that need to
place their libraries in Clang's resource directory with a layout that is
different from the default one.
Reviewers: atanasyan, rsmith
Subscribers: tberghammer, danalbert, srhines, cfe-commits
Differential Revision: http://reviews.llvm.org/D13339
llvm-svn: 249030
We support all __sync_val_compare_and_swap_* builtins (only 64-bit on 64-bit
targets) on all cores, and should define the corresponding
__GCC_HAVE_SYNC_COMPARE_AND_SWAP_* macros, just as GCC does. As it turns out,
this is really important because they're needed to prevent a bad ODR violation
with libstdc++'s std::shared_ptr (this is well explained in PR12730).
We were doing this only for P8, but this is necessary on all PPC systems.
llvm-svn: 249009
This reverts commit r248982 as it was breaking the ARM buildbots and the fix didn't work.
This reverts commit r248984, the fix that didn't work.
llvm-svn: 249005
This allows clang-format to align identifiers in consecutive
declarations. This is useful for increasing the readability of the code
in the same way the alignment of assignations is.
The code is a slightly modified version of the consecutive assignment
alignment code. Currently only the identifiers are aligned, and there is
no support of alignment of the pointer star or reference symbol.
The patch also solve the issue of alignments not being possible due to
the ColumnLimit for both the existing AlignConsecutiveAligments and the
new AlignConsecutiveDeclarations.
Patch by Beren Minor, thank you.
Review: http://reviews.llvm.org/D12362
llvm-svn: 248999
recently when we started using direct conversion to model sign
extension. The __v16qi type we use for SSE v16i8 vectors is defined in
terms of 'char' which may or may not be signed! This causes us to
generate pmovsx and pmovzx depending on the setting of -funsigned-char.
This patch just forms an explicitly signed type and uses that to
formulate the sign extension. While this gets the correct behavior
(which we now verify with the enhanced test) this is just the tip of the
ice berg. Now that I know what to look for, I have found errors of this
sort *throughout* our vector code. Fortunately, this is the only
specific place where I know of users actively having their code
miscompiled by Clang due to this, so I'm keeping the fix for those users
minimal and targeted.
I'll be sending a proper email for discussion of how to fix these
systematically, what the implications are, and just how widely broken
this is... From what I can tell, we have never shipped a correct set of
builtin headers for x86 when users rely on -funsigned-char. Oops.
llvm-svn: 248980
Make sure the output filepath supplied to createUniqueFile() in HTMLDiagnostics::ReportDiag() is absolute.
Summary: Make sure the output filepath supplied to createUniqueFile() in HTMLDiagnostics::ReportDiag() is absolute.
Reviewers: rsmith, akyrtzi
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12774
llvm-svn: 248977
Unqualified templated constructors cannot be friended and our lack of a
diagnostic led to violated invariants. Instead, raise a diagnostic when
processing the friend declaration.
This fixes PR20251.
llvm-svn: 248953
Summary: __nvvm_atom_cas_* returns the old value instead of whether the swap succeeds.
Reviewers: eliben, tra
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D13306
llvm-svn: 248951
When an Objective-C method implements a protocol requirement, do not
inherit any availability information from the protocol
requirement. Rather, check that the implementation is not less
available than the protocol requirement, as we do when overriding a
method that has availability. Fixes rdar://problem/22734745.
llvm-svn: 248949
Usually, when using LTO with a clang installation newer than the
system's one, there's a libLTO.dylib version mismatch and LTO fails. One
solution to this is to make ld point to the right libLTO.dylib by
changing DYLD_LIBRARY_PATH.
However, ld64 supports specifying the complete path to the desired
libLTO.dylib through the -lto_library option. This commit adds support
for the clang driver to use this option whenever it's capable of finding
a libLTO.dylib in clang's installed library directory. This way, we
don't need to rely on DYLD_LIBRARY_PATH nor get caught by version
mismatches.
Differential Revision: http://reviews.llvm.org/D13117
rdar://problem/7363476
llvm-svn: 248932
We get into this bad state when someone defines a new member function
for a class but forgets to add the declaration to the class body.
Calling the new member function from a member function template of the
class will crash during instantiation.
llvm-svn: 248925
- Remove virtual SC_OpenCLWorkGroupLocal storage type specifier
as it conflicts with static local variables now and prevents
diagnosing static local address space variables correctly.
- Allow static local and global variables (OpenCL2.0 s6.8 and s6.5.1).
- Improve diagnostics of allowed ASes for variables in different scopes:
(i) Global or static local variables have to be in global
or constant ASes (OpenCL1.2 s6.5, OpenCL2.0 s6.5.1);
(ii) Non-kernel function variables can't be declared in local
or constant ASes (OpenCL1.1 s6.5.2 and s6.5.3).
http://reviews.llvm.org/D13105
llvm-svn: 248906
FunctionParmPackExpr actually stores an array of ParmVarDecl* (and
accessors return that). But, the FunctionParmPackExpr::Create()
constructor accepted an array of Decl *s instead.
It was easy for this mismatch to occur without any obvious sign of
something wrong, since both the store and the access used independent
'reinterpet_cast<XX>(this+1)' calls.
llvm-svn: 248905
Applied restrictions from OpenCL v2.0 s6.13.11.8
that mainly disallow operations on atomic types (except for taking their address - &).
The patch is taken from SPIR2.0 provisional branch, contributed by Guy Benyei!
llvm-svn: 248896
This is the clang commit associated with llvm r248887.
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D13127
llvm-svn: 248888
specification) to an error. No compiler other than Clang seems to allow this,
and it doesn't seem like a useful thing to accept as an extension in general.
The current behavior was added for PR5957, where the problem was specifically
related to mismatches of the exception specification on the implicitly-declared
global operator new and delete. To retain that workaround, we downgrade the
error to an ExtWarn when the declaration is of a replaceable global allocation
function.
Now that this is an error, stop trying (and failing) to recover from a missing
computed noexcept specification. That recovery didn't work, and led to crashes
in code like the added testcase.
llvm-svn: 248867
r51703 back in 2008 split out all the ObjC Expr subclasses from Expr.h
to a new ExprObjC.h file, but failed to also split the implementation
from Expr.cpp to ExprObjC.cpp. Do so, finally, for readability's sake.
llvm-svn: 248836
This patch corresponds to review:
http://reviews.llvm.org/D13190
Implemented the following interfaces to conform to ELF V2 ABI version 1.1.
vector signed __int128 vec_adde (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_adde (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed __int128 vec_addec (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_addec (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed int vec_addc(vector signed int __a, vector signed int __b);
vector bool char vec_cmpge (vector signed char __a, vector signed char __b);
vector bool char vec_cmpge (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmpge (vector signed short __a, vector signed short __b);
vector bool short vec_cmpge (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmpge (vector signed int __a, vector signed int __b);
vector bool int vec_cmpge (vector unsigned int __a, vector unsigned int __b);
vector bool char vec_cmple (vector signed char __a, vector signed char __b);
vector bool char vec_cmple (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmple (vector signed short __a, vector signed short __b);
vector bool short vec_cmple (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmple (vector signed int __a, vector signed int __b);
vector bool int vec_cmple (vector unsigned int __a, vector unsigned int __b);
vector double vec_double (vector signed long long __a);
vector double vec_double (vector unsigned long long __a);
vector bool char vec_eqv(vector bool char __a, vector bool char __b);
vector bool short vec_eqv(vector bool short __a, vector bool short __b);
vector bool int vec_eqv(vector bool int __a, vector bool int __b);
vector bool long long vec_eqv(vector bool long long __a, vector bool long long __b);
vector signed short vec_madd(vector signed short __a, vector signed short __b, vector signed short __c);
vector signed short vec_madd(vector signed short __a, vector unsigned short __b, vector unsigned short __c);
vector signed short vec_madd(vector unsigned short __a, vector signed short __b, vector signed short __c);
vector unsigned short vec_madd(vector unsigned short __a, vector unsigned short __b, vector unsigned short __c);
vector bool long long vec_mergeh(vector bool long long __a, vector bool long long __b);
vector bool long long vec_mergel(vector bool long long __a, vector bool long long __b);
vector bool char vec_nand(vector bool char __a, vector bool char __b);
vector bool short vec_nand(vector bool short __a, vector bool short __b);
vector bool int vec_nand(vector bool int __a, vector bool int __b);
vector bool long long vec_nand(vector bool long long __a, vector bool long long __b);
vector bool char vec_orc(vector bool char __a, vector bool char __b);
vector bool short vec_orc(vector bool short __a, vector bool short __b);
vector bool int vec_orc(vector bool int __a, vector bool int __b);
vector bool long long vec_orc(vector bool long long __a, vector bool long long __b);
vector signed long long vec_sub(vector signed long long __a, vector signed long long __b);
vector signed long long vec_sub(vector bool long long __a, vector signed long long __b);
vector signed long long vec_sub(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_sub(vector unsigned long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector unsigned long long __V2 ABI V1.1
http://ror float vec_sub(vector float __a, vector float __b);
unsigned char vec_extract(vector bool char __a, int __b);
signed short vec_extract(vector signed short __a, int __b);
unsigned short vec_extract(vector bool short __a, int __b);
signed int vec_extract(vector signed int __a, int __b);
unsigned int vec_extract(vector bool int __a, int __b);
signed long long vec_extract(vector signed long long __a, int __b);
unsigned long long vec_extract(vector unsigned long long __a, int __b);
unsigned long long vec_extract(vector bool long long __a, int __b);
double vec_extract(vector double __a, int __b);
vector bool char vec_insert(unsigned char __a, vector bool char __b, int __c);
vector signed short vec_insert(signed short __a, vector signed short __b, int __c);
vector bool short vec_insert(unsigned short __a, vector bool short __b, int __c);
vector signed int vec_insert(signed int __a, vector signed int __b, int __c);
vector bool int vec_insert(unsigned int __a, vector bool int __b, int __c);
vector signed long long vec_insert(signed long long __a, vector signed long long __b, int __c);
vector unsigned long long vec_insert(unsigned long long __a, vector unsigned long long __b, int __c);
vector bool long long vec_insert(unsigned long long __a, vector bool long long __b, int __c);
vector double vec_insert(double __a, vector double __b, int __c);
vector signed long long vec_splats(signed long long __a);
vector unsigned long long vec_splats(unsigned long long __a);
vector signed __int128 vec_splats(signed __int128 __a);
vector unsigned __int128 vec_splats(unsigned __int128 __a);
vector double vec_splats(double __a);
int vec_all_eq(vector double __a, vector double __b);
int vec_all_ge(vector double __a, vector double __b);
int vec_all_gt(vector double __a, vector double __b);
int vec_all_le(vector double __a, vector double __b);
int vec_all_lt(vector double __a, vector double __b);
int vec_all_nan(vector double __a);
int vec_all_ne(vector double __a, vector double __b);
int vec_all_nge(vector double __a, vector double __b);
int vec_all_ngt(vector double __a, vector double __b);
int vec_any_eq(vector double __a, vector double __b);
int vec_any_ge(vector double __a, vector double __b);
int vec_any_gt(vector double __a, vector double __b);
int vec_any_le(vector double __a, vector double __b);
int vec_any_lt(vector double __a, vector double __b);
int vec_any_ne(vector double __a, vector double __b);
vector unsigned char vec_sbox_be (vector unsigned char);
vector unsigned char vec_cipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_cipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_shasigma_be (vector unsigned int, const int, const int);
vector unsigned long long vec_shasigma_be (vector unsigned long long, const int, const int);
vector unsigned short vec_pmsum_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_pmsum_be (vector unsigned short, vector unsigned short);
vector unsigned long long vec_pmsum_be (vector unsigned int, vector unsigned int);
vector unsigned __int128 vec_pmsum_be (vector unsigned long long, vector unsigned long long);
vector unsigned char vec_gb (vector unsigned char);
vector unsigned long long vec_bperm (vector unsigned __int128 __a, vector unsigned char __b);
Removed the folowing interfaces either because their signatures have changed
in version 1.1 of the ABI or because they were implemented for ELF V2 ABI but
have actually been deprecated in version 1.1.
vector signed char vec_eqv(vector bool char __a, vector signed char __b);
vector signed char vec_eqv(vector signed char __a, vector bool char __b);
vector unsigned char vec_eqv(vector bool char __a, vector unsigned char __b);
vector unsigned char vec_eqv(vector unsigned char __a, vector bool char __b);
vector signed short vec_eqv(vector bool short __a, vector signed short __b);
vector signed short vec_eqv(vector signed short __a, vector bool short __b);
vector unsigned short vec_eqv(vector bool short __a, vector unsigned short __b);
vector unsigned short vec_eqv(vector unsigned short __a, vector bool short __b);
vector signed int vec_eqv(vector bool int __a, vector signed int __b);
vector signed int vec_eqv(vector signed int __a, vector bool int __b);
vector unsigned int vec_eqv(vector bool int __a, vector unsigned int __b);
vector unsigned int vec_eqv(vector unsigned int __a, vector bool int __b);
vector signed long long vec_eqv(vector bool long long __a, vector signed long long __b);
vector signed long long vec_eqv(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_eqv(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_eqv(vector unsigned long long __a, vector bool long long __b);
vector float vec_eqv(vector bool int __a, vector float __b);
vector float vec_eqv(vector float __a, vector bool int __b);
vector double vec_eqv(vector bool long long __a, vector double __b);
vector double vec_eqv(vector double __a, vector bool long long __b);
vector unsigned short vec_nand(vector bool short __a, vector unsigned short __b);
llvm-svn: 248813
control the individual braces. The existing choices for brace wrapping
are now merely presets for the different flags that get expanded upon
calling the reformat function.
All presets have been chose to keep the existing formatting, so there
shouldn't be any difference in formatting behavior.
Also change the dump_format_style.py to properly document the nested
structs that are used to keep these flags discoverable among all the
configuration flags.
llvm-svn: 248802
Recognize the main module header as well as different #include categories.
This should now mimic the behavior of llvm/utils/sort_includes.py as
well as clang-tools-extra/clang-tidy/llvm/IncludeOrderCheck.cpp very
closely.
llvm-svn: 248782
Description.
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered regions in the order of the loop iterations.
Restrictions.
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region.
An ordered directive with ‘simd’ clause is generated as an outlined function and corresponding function call to prevent this part of code from vectorization later in backend.
llvm-svn: 248772
LookupResult should not be copyable, it's not readily copyable and can
only be copied when it's in specific states (in a query state, without
any results, basically). Instead, just extract the /query/ state and
pass that across the copy boundary, then build a new LookupResult on the
other side.
I wonder if a better API (one in which the query state is separate from
the result state - essentialyl making QueryState a first class part of
the Lookup API - pass a QueryState, get a LookupResult, rather than
mutating the LookupResult in place (LookupResult could contain a
QueryState if it's particularly helpful to be able to observe the query
parameters while also examining the result)) might be a good idea here.
Future patches will probably make LookupResult actually non-copyable
(transition the CXXBasePaths to unique_ptr, for example) and hopefully
we'll enable -Wdeprecated in LLVM soon to avoid issues like this.
llvm-svn: 248761
Currently it's 64-bit which will lead to mismatch between host and
device code if we compile for i386.
Differential Revision: http://reviews.llvm.org/D13181
llvm-svn: 248753
JavaScript allows keywords to appear in IdenfierName positions, e.g.
fields, or object literal members, but not as plain identifiers.
Patch by Martin Probst. Thank you!
llvm-svn: 248714
Parsing and sema analysis for 'simd' clause in 'ordered' directive.
Description
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered
regions in the order of the loop iterations.
Restrictions
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region
llvm-svn: 248696
ARM EABI adds target attributes to the object file. Amongst the attributes that
are emitted is the VFP argument passing (Hard vs Soft). The linker is
responsible for checking these attributes and erroring on mismatches. This
causes problems for the compiler-rt builtins when targeting both hard and
soft. Because both of these options name the builtins compiler-rt component
the same (libclang_rt.builtins-arm.a or libclang_rt.builtins-arm-android). GCC
is able to get away with this as it does one target per toolchain. This
changes the naming convention for the ARM compiler-rt builtins to differentiate
between HF and Soft. Although this means that compiler-rt may be duplicated, it
enables supporting both variants from a single toolchain. A similar approach is
taken by the Darwin toolchain, naming the library to differentiate between the
calling conventions.
llvm-svn: 248649
This patch fixes the order in which we evaluate the different ways that
a function call could be disallowed. Now, if you call a non-overloaded
function with an incomplete type and failing enable_if, we'll prioritize
reporting the more obvious error (use of incomplete type) over reporting
the failing enable_if.
Thanks to Ettore Speziale for the patch!
llvm-svn: 248595
logic to select an alternate target based on the executable it was
called as. For instance, if you symlink i686-linux-android-gcc to clang
and invoke it, the driver will act as though it were called with another
argument ("-target i686-linux-android"). This leads to visible effects
even in syntax-only compilations (like the ANDROID preprocessor symbol
being defined).
This behavior is not replicated for tool invocations--for instance,
clang::createInvocationFromCommandLine will not choose an alternate
target based on ArgList[0]. This means that configurations stored in
compilation databases aren't accurately replayed.
This patch separates the logic for selecting a mode flag and target from
the executable name into a new member function on ToolChain. It should
have no functional effects (but will allow other code to reuse the
target/mode selection logic).
Patch by Luke Zarko!
llvm-svn: 248592
OpenMP 4.1 extends format of '#pragma omp ordered'. It adds 3 additional clauses: 'threads', 'simd' and 'depend'.
If no clause is specified, the ordered construct behaves as if the threads clause had been specified. If the threads clause is specified, the threads in the team executing the loop region execute ordered regions sequentially in the order of the loop iterations.
The loop region to which an ordered region without any clause or with a threads clause binds must have an ordered clause without the parameter specified on the corresponding loop directive.
llvm-svn: 248569
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D11279
llvm-svn: 248546
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in
a hand-rolled tricky condition block in lib/Basic/Targets.cpp, with a FIXME:
attached.
http://reviews.llvm.org/D12937 moved the handling of the DSP feature over to
ARMTargetParser.def in LLVM, to be in line with other architecture extensions.
This is the corresponding patch to clang, to clear the FIXME: and update
the tests.
Differential Revision: http://reviews.llvm.org/D12938
llvm-svn: 248521
Change the analyzer's modeling of memcpy to be more precise when copying into fixed-size
array fields. With this change, instead of invalidating the entire containing region the
analyzer now invalidates only offsets for the array itself when it can show that the
memcpy stays within the bounds of the array.
This addresses false positive memory leak warnings of the kind reported by
krzysztof in https://llvm.org/bugs/show_bug.cgi?id=22954
(This is the second attempt, now with assertion failures resolved.)
A patch by Pierre Gousseau!
Differential Revision: http://reviews.llvm.org/D12571
llvm-svn: 248516