type-specifier in C++. Some checks will assert in this case otherwise (in
particular, the access specifier may be missing if this happens inside a class
definition, due to a violation of an AST invariant).
llvm-svn: 198721
1) Teach ExpectAndConsume() to emit expected and expected-after diagnostics
using the generic diagnostic descriptions added in r197972, eliminating another
set of trivial err_expected_* variations while maintaining existing behaviour.
2) Lift SkipUntil() recovery out of ExpectAndConsume(). The Expect/Consume
family of functions are primitive parser operations that now have the
well-defined property of operating on single tokens. Factoring out recovery
exposes opportunities for more consistent and tailored error recover at the
call sites instead of just relying on a bottled SkipUntil formula.
llvm-svn: 198270
Previously any error in enum definition body stopped parsing it. With this
change parser tries to recover from errors.
The patch fixes PR10982.
Differential Revision: http://llvm-reviews.chandlerc.com/D2018
llvm-svn: 198259
Introduce proper facilities to render token spellings using the diagnostic
formatter.
Replaces most of the hard-coded diagnostic messages related to expected tokens,
which all shared the same semantics but had to be multiply defined due to
variations in token order or quote marks.
The associated parser changes are largely mechanical but they expose
commonality in whole chunks of the parser that can now be factored away.
This commit uses C++11 typed enums along with a speculative legacy fallback
until the transition is complete.
Requires corresponding changes in LLVM r197895.
llvm-svn: 197972
This commit kills off custom type specifier and keyword handling of OpenCL C
data types.
Although the OpenCL spec describes them as keywords, we can handle them more
elegantly as predefined types. This should provide better error correction and
code completion as well as simplifying the implementation.
The primary intention is however to simplify the C/C++ parser and save some
packed bits on AST structures that had been extended in r170432 just for
OpenCL.
llvm-svn: 197578
Avoid the gratuitous repurposing of C++ keyword 'private' by using a keyword
alias.
Also attempt to document the OpenCL keywords based on scraps of information
found online.
The purpose of this commit is to reduce impact on the C++ parser.
llvm-svn: 197511
1) Introduce TryConsumeToken() to handle the common test-and-consume pattern.
This brings about readability improvements in the parser and optimizes to avoid
redundant checks in the common case.
2) Eliminate the ConsumeCodeCompletionTok special case from ConsumeToken(). This
was used by only one caller which has been switched over to the more
appropriate ConsumeCodeCompletionToken() function.
llvm-svn: 197497
which specifies couple of (optional) method selectors
for bridging a CFobject to or from an ObjectiveC
object. This is wip. // rdsr://15499111
llvm-svn: 196408
clang converts keywords to identifiers for compatibility with various system
headers such as GNU libc.
Implement a -Wkeyword-compat extension warning to diagnose those cases. The
warning is on by default but will generally be ignored in system headers. It
can however be enabled globally to aid standards conformance testing.
This also changes the __uptr keyword avoidance from r195710 to no longer
special-case system headers, bringing it in line with other similar workarounds
in clang.
Implementation returns bool for symmetry with token annotation functions.
Some examples:
warning: keyword '__is_pod' will be treated as an identifier for the remainder of the translation unit [-Wkeyword-compat]
struct __is_pod
warning: keyword '__uptr' will be treated as an identifier here [-Wkeyword-compat]
union w *__uptr;
llvm-svn: 196212
GNU libc uses '__uptr' as a member name in C mode, conflicting with the
eponymous MSVC pointer modifier keyword.
Detect and mark the token as an identifier when these specific conditions are
met. __uptr will continue to work as a keyword for the remainder of the
translation unit.
Fixes PR17824.
llvm-svn: 195710
module. Use the marker to diagnose cases where we try to transition between
submodules when not at the top level (most likely because a closing brace was
missing at the end of a header file, but is also possible if submodule headers
attempt to do something fundamentally non-modular, like our .def files).
llvm-svn: 195543
and we see an ill-formed declarator that would probably be well-formed if the
tag definition were just missing a semicolon, use that as the diagnostic
instead of producing some other mysterious error.
llvm-svn: 195163
This patch fixes PR8264. Duplicate qualifiers already are diagnozed,
now the same diagnostics is issued for duplicate function specifiers.
Differential Revision: http://llvm-reviews.chandlerc.com/D2025
llvm-svn: 194559
into a separate "parse an attribute that takes a type argument" codepath. This
results in both codepaths being a lot cleaner and simpler, and fixes some bugs
where the type argument handling bled into the expression argument handling and
caused us to both accept invalid and reject valid attribute arguments.
llvm-svn: 193731
which we don't think can't have one, only allow it in the tiny number of
attributes which opts into this weird parse rule.
I've manually checked that the handlers for all these attributes can in fact
cope with an identifier as the argument. This is still somewhat terrible; we
should move more fully towards picking the parsing rules based on the
attribute, and make the Parse -> Sema interface more type-safe.
llvm-svn: 193295
that looks like a function declaration, except that it's missing a return type,
try typo-correcting it to the relevant constructor name.
In passing, fix a bug where the missing-type-specifier recovery codepath would
drop a preceding scope specifier on the floor, leading to follow-on diagnostics
and incorrect recovery for the auto-in-c++98 hack.
llvm-svn: 192644
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- generic lambdas within template functions and nested
within other generic lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
(Although I have gotten some useful feedback on my patches of the above and will be incorporating that as I submit those patches for commit)
As an example of what compiles through this commit:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
This patch has been reviewed by Doug and Richard. Minor changes (non-functionality affecting) have been made since both of them formally looked at it, but the changes involve removal of supernumerary return type deduction changes (since they are now redundant, with richard having committed a recent patch to address return type deduction for C++11 lambdas using C++14 semantics).
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that SemaType.cpp::ConvertDeclSpecToType may use it to immediately
generate a template-parameter-type when 'auto' is parsed in a generic
lambda parameter context. (i.e we do NOT use AutoType deduced to
a template parameter type - Richard seemed ok with this approach).
We encode that this template type was generated from an auto by simply
adding $auto to the name which can be used for better diagnostics if needed.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- various tests were added - but much more will be needed.
There is obviously more work to be done, and both Richard (weakly) and Doug (strongly)
have requested that LambdaExpr be removed form the CXXRecordDecl LambdaDefinitionaData
in a future patch which is forthcoming.
A greatful thanks to all reviewers including Eli Friedman, James Dennett,
and especially the two gracious wizards (Richard Smith and Doug Gregor)
who spent hours providing feedback (in person in Chicago and on the mailing lists).
And yet I am certain that I have allowed unidentified bugs to creep in; bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 191453
When a comma occurs in a default argument or default initializer within a
class, disambiguate whether it is part of the initializer or whether it ends
the initializer.
The way this works (which I will be proposing for standardization) is to treat
the comma as ending the default argument or default initializer if the
following token sequence matches the syntactic constraints of a
parameter-declaration-clause or init-declarator-list (respectively).
This is both consistent with the disambiguation rules elsewhere (where entities
are treated as declarations if they can be), and should have no regressions
over our old behavior. I think it might also disambiguate all cases correctly,
but I don't have a proof of that.
There is an annoyance here: because we're performing a tentative parse in a
situation where we may not have seen declarations of all relevant entities (if
the comma is part of the initializer, lookup may find entites declared later in
the class), we need to turn off typo-correction and diagnostics during the
tentative parse, and in the rare case that we decide the comma is part of the
initializer, we need to revert all token annotations we performed while
disambiguating.
Any diagnostics that occur outside of the immediate context of the tentative
parse (for instance, if we trigger the implicit instantiation of a class
template) are *not* suppressed, mirroring the usual rules for a SFINAE context.
llvm-svn: 190639
is at the end of the line, point to the location after the double colon instead
of at the next token. There is more context to be given this way. In addition,
the next token can be several lines later.
llvm-svn: 190029
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
When we are parsing a type for an alias template, we are not entering
the context, so we can't look into dependent classes. Make sure the
parser handles this correctly.
PR16904.
llvm-svn: 188510
followed by an identifier, then diagnose an identifier as being a bogus part of
the declarator instead of tripping over it. Improves diagnostics for cases like
std::vector<const int *p> my_vec;
llvm-svn: 186061
PR16456 reported that Clang implements a hybrid between AltiVec's
"Keyword and Predefine Method" and its "Context Sensitive Keyword
Method," where "bool" is always a keyword, but "vector" and "pixel"
are context-sensitive keywords. This isn't permitted by the AltiVec
spec. For consistency with gcc, this patch implements the Context
Sensitive Keyword Method for bool, and stops treating true and false
as keywords in Altivec mode.
The patch removes KEYALTIVEC as a trigger for defining these keywords
in include/clang/Basic/TokenKinds.def, and adds logic for "vector
bool" that mirrors the existing logic for "vector pixel." The test
case is taken from the bug report.
llvm-svn: 185580
- 'register' storage class
- dynamic exception specifications
Only the former check is enabled by default for now (the latter might be quite noisy).
llvm-svn: 183881
places which weren't setting it up properly. This allows us to get the right
cv-qualifiers for 'this' when it appears outside a method body in a class
template.
llvm-svn: 183483
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
DiagnosticBuilder kept its implicit conversion operator owing to the
prevalent use of it in return statements.
One bug was found in ExprConstant.cpp involving a comparison of two
PointerUnions (PointerUnion did not previously have an operator==, so
instead both operands were converted to bool & then compared). A test
is included in test/SemaCXX/constant-expression-cxx1y.cpp for the fix
(adding operator== to PointerUnion in LLVM).
llvm-svn: 181869
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180973
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180970
C++1y, so stop adding the 'const' there. Provide a compatibility warning for
code relying on this in C++11, with a fix-it hint. Update our lazily-written
tests to add the const, except for those ones which were testing our
implementation of this rule.
llvm-svn: 179969
When we are consuming the current token just to enter a new token stream, we push
the current token in the back of the stream so that we get it again.
Unfortunately this had the effect where if the current token is a code-completion one,
we would code-complete once during consuming it and another time after the stream ended.
Fix this by making sure that, in this case, ConsumeAnyToken() will consume a code-completion
token without invoking code-completion.
rdar://12842503
llvm-svn: 178199
which allows grouping parens in an abstract-pack-declarator. This was already
mostly implemented, but missed some cases. Add an ExtWarn for use of this
extension until CWG ratifies it.
llvm-svn: 175660
attributes yet, so just issue the appropriate diagnostics. Also generalize the
fixit for attributes-in-the-wrong-place code and reuse it here, if attributes
are placed after the access-specifier or 'virtual' in a base specifier.
llvm-svn: 175575
MSVC accepts this:
class A {
A::A();
};
Clang accepts regular member functions with extra qualification as an MS
extension, but not constructors. This changes the parser to defer rejecting
qualified constructors so that the same Sema logic can apply to constructors as
regular member functions. This also improves the error message when MS
extensions are disabled (in my opinion). Before it was:
/Users/jason/Desktop/test.cpp:2:8: error: expected member name or ';' after declaration specifiers
A::A();
~~~~ ^
1 error generated.
After:
/Users/jason/Desktop/test.cpp:2:6: error: extra qualification on member 'A'
A::A();
~~~^
1 error generated.
Patch by Jason Haslam.
llvm-svn: 174980
the diagnostic's warn_ name. Switch some places (notably C++11 attributes)
which really wanted an error over to a different diagnostic. Finally, suppress
the diagnostic entirely for __ptr32, __ptr64 and __w64, to avoid producing
diagnostics in important system headers.
llvm-svn: 173788
as a keyword. Rationalize existing attributes to use it as appropriate, and to
not lie about some __declspec attributes being GNU attributes. In passing,
remove a gross hack which was discarding attributes which we could handle. This
results in us actually respecting the __pascal keyword again.
llvm-svn: 173746
This required plumbing through a new flag to determine whether a ParmVarDecl is
actually a parameter of a function declaration (as opposed to a function
typedef etc, where the attribute is prohibited). Weirdly, this attribute (just
like [[noreturn]]) cannot be applied to a function type, just to a function
declaration (and its parameters).
llvm-svn: 173726
on a type. Currently, it gives a generic "expected unqualified-id" error.
The new error message is "cannot use (dot|arrow) operator on a type".
llvm-svn: 173556
it apart from [[gnu::noreturn]] / __attribute__((noreturn)), since their
semantics are not equivalent (for instance, we treat [[gnu::noreturn]] as
affecting the function type, whereas [[noreturn]] does not).
llvm-svn: 172691
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
This change list implemented logic that explicitly detects several combinations of locations where C++11 attribute
specifiers might be incorrectly placed within a class specifier. Previously we emit generic diagnostics like
"expected identifier" for such cases; now we emit specific diagnostic against the misplaced attributes, this also
fixed a bug in old code where attributes appear at legitimate locations were incorrectly rejected.
Thanks to Richard Smith for reviewing!
llvm-svn: 168626
positions of Objective-C methods.
It is possible to recover a lot of type information about
Objective-C methods from the reflective metadata for their
implementations. This information is not rich when it
comes to struct types, however, and it is not possible to
produce a type in the debugger's round-tripped AST which
will really do anything useful during type-checking.
Therefore we allow __unknown_anytype in these positions,
which essentially disables type-checking for that argument.
We infer the parameter type to be the unqualified type of
the argument expression unless that expression is an
explicit cast, in which case it becomes the type-as-written
of that cast.
rdar://problem/12565338
llvm-svn: 167896
We don't support any C++11 attributes that appertain to declaration specifiers so reject
the attributes in parser until we support them; this also conforms to what g++ 4.8 is doing.
llvm-svn: 167481
For GNU attributes, instead of reusing attribute source
location for the scope location, use SourceLocation() since
GNU attributes don not have scope tokens.
llvm-svn: 165234
- General C++11 attributes were previously parsed and ignored. Now they are parsed and stored in AST.
- Add support to parse arguments of attributes that in 'gnu' namespace.
- Differentiate unknown attributes and known attributes that can't be applied to statements when emitting diagnostic.
llvm-svn: 165082
typeid (and a couple other non-standard places where we can transform an
unevaluated expression into an evaluated expression) is special
because it introduces an an expression evaluation context,
which conflicts with the mechanism to compute the current
lambda mangling context. PR12123.
I would appreciate if someone would double-check that we get the mangling
correct with this patch.
llvm-svn: 164658
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
function arguments and arguments for variadic functions are of a particular
type which is determined by some other argument to the same function call.
Usecases include:
* MPI library implementations, where these attributes enable checking that
buffer type matches the passed MPI_Datatype;
* for HDF5 library there is a similar usecase as MPI;
* checking types of variadic functions' arguments for functions like
fcntl() and ioctl().
llvm-svn: 162067
accurate by asking the parser whether there was an ambiguity rather than trying
to reverse-engineer it from the DeclSpec. Make the with-parameters case have
better diagnostics by using semantic information to drive the warning,
improving the diagnostics and adding a fixit.
Patch by Nikola Smiljanic. Some minor changes by me to suppress diagnostics for
declarations of the form 'T (*x)(...)', which seem to have a very high false
positive rate, and to reduce indentation in 'warnAboutAmbiguousFunction'.
llvm-svn: 160998
scope to -Wc++11-extensions. Move extra semicolon after member function
definition diagnostic out of -pedantic, since C++ allows a single semicolon
there. Keep it in -Wextra-semi, though, since it's still questionable.
llvm-svn: 160618
of c-functions nested in namespace in method implementations
by turning off its delayed parsing until a proper solution is
figured out. pr13418
llvm-svn: 160552
Previously it was possible to get an infinite-loop-on-invalid with a namespace
decl within @interface. Since 'namespace' is normally a safe place to retry
top-level parsing, we just didn't consume the token.
This adds a flag that tracks whether we have temporarily left Objective-C
scope to parse a C-like declaration, and uses that to better recover from
parse problems by stopping at possible method declarations and at @end. To
fix the original problem, we do /not/ stop at 'namespace' when in an
Objective-C @interface or @protocol context (but still do in @implementation).
llvm-svn: 159941
of out-of-line c++ method definition which happens
to be inside an objc class implementation
until I can figure out how to do it. This is to fix
a broken project.
llvm-svn: 159772
c-functions declared in implementation should have their
parsing delayed until the end so, they can access forward
declared private methods. // rdar://10387088
llvm-svn: 159626
This behaves like the existing GNU __alignof and C++11 alignof keywords;
most of the patch is simply adding the third token spelling to various places.
llvm-svn: 159494
In future changes we should:
* use __builtin_trap rather than derefing 'random' volatile pointers.
* avoid dumping temporary files into /tmp when running tests, instead
preferring a location that is properly cleaned up by lit.
Review by Chandler Carruth.
llvm-svn: 159469
attributes in more places where we didn't and catching a lot more issues.
This implements nearly every aspect of C++11 attribute parsing, except for:
- Attributes are permitted on explicit instantiations inside the declarator
(but not preceding the decl-spec)
- Attributes are permitted on friend declarations of functions.
- Multiple instances of the same attribute in an attribute-list (e.g.
[[noreturn, noreturn]], not [[noreturn]] [[noreturn]] which is conforming)
are allowed.
The first two are marked as expected-FIXME in the test file and the latter
is probably a defect and is currently untested.
Thanks to Richard Smith for providing the lion's share of the testcases.
llvm-svn: 159072
The original r158700 caused crashes in the gcc test suite,
g++.abi/vtable3a.C among others. It also caused failures in the libc++
test suite.
llvm-svn: 158749
Note that this is mostly a structural patch that handles the change from the old
spelling style to the new one. One consequence of this is that all AT_foo_bar
enum values have changed to not be based off of the first spelling, but rather
off of the class name, so they are now AT_FooBar and the like (a straw poll on
IRC showed support for this). Apologies for code churn.
Most attributes have GNU spellings as a temporary solution until everything else
is sorted out (such as a Keyword spelling, which I intend to add if someone else
doesn't beat me to it). This is definitely a WIP.
I've also killed BaseCheckAttr since it was unused, and I had to go through
every attribute anyway.
llvm-svn: 158700
Now, as long as the 'Namespaces' variable is correct inside Attr.td, the
generated code will correctly admit a C++11 attribute only when it has the
appropriate namespace(s).
llvm-svn: 158661
a warning for an extra semi-colon after function definitions. Added logic
so that a block of semi-colons on a line will only get one warning instead
of a warning for each semi-colon.
llvm-svn: 156934
and the thing we have has a scope specifier, and we're in a context that doesn't
allow declaring a qualified name, then the error is a malformed type, not a
missing type.
llvm-svn: 156856
so that we actually accumulate all the delayed diagnostics. Do
this so that we can restore those diagnostics to good standing
if it turns out that we were wrong to suppress, e.g. if the
tag specifier is actually an elaborated type specifier and not
a declaration.
llvm-svn: 156291
refactorings in that revision, and some of the subsequent bugfixes, which
seem to be relevant even without delayed exception specification parsing.
llvm-svn: 156031
us to improve this diagnostic (telling us to insert another ")":
t.c:2:19: error: expected ';' at end of declaration
int x = 4+(5-12));
^
;
to:
t.c:2:19: error: extraneous ')' before ';'
int x = 4+(5-12));
^
...telling us to remove the ")". This is PR12595. There are more uses of ExpectAndConsumeSemi
that could be switched over, but I don't hit them on a daily basis :)
llvm-svn: 155759
exception specifications on member functions until after the closing
'}' for the containing class. This allows, for example, a member
function to throw an instance of its own class. Fixes PR12564 and a
fairly embarassing oversight in our C++98/03 support.
llvm-svn: 154844
in the declaration of a non-static member function after the
(optional) cv-qualifier-seq, which in practice means in the exception
specification and late-specified return type.
The new scheme here used to manage 'this' outside of a member function
scope is more general than the Scope-based mechanism previously used
for non-static data member initializers and late-parsesd attributes,
because it can also handle the cv-qualifiers on the member
function. Note, however, that a separate pass is required for static
member functions to determine whether 'this' was used, because we
might not know that we have a static function until after declaration
matching.
Finally, this introduces name mangling for 'this' and for the implicit
'this', which is intended to match GCC's mangling. Independent
verification for the new mangling test case would be appreciated.
Fixes PR10036 and PR12450.
llvm-svn: 154799
attached. Since we do not support any attributes which appertain to a statement
(yet), testing of this is necessarily quite minimal.
Patch by Alexander Kornienko!
llvm-svn: 154723
* Alternative tokens (such as 'compl') are treated as identifiers in
attribute names.
* An attribute-list can start with a comma.
* An ellipsis may not be used with either of our currently-supported
C++11 attributes.
llvm-svn: 154381
* In C++11, '[[' is ill-formed unless it starts an attribute-specifier. Reject
array sizes and array indexes which begin with a lambda-expression. Recover by
parsing the lambda as a lambda.
* In Objective-C++11, either '[' could be the start of a message-send.
Fully disambiguate this case: it turns out that the grammars of message-sends,
lambdas and attributes do not actually overlap. Accept any occurrence of '[['
where either '[' starts a message send, but reject a lambda in an array index
just like in C++11 mode.
Implement a couple of changes to the attribute wording which occurred after our
attributes implementation landed:
* In a function-declaration, the attributes go after the exception specification,
not after the right paren.
* A reference type can have attributes applied.
* An 'identifier' in an attribute can also be a keyword. Support for alternative
tokens (iso646 keywords) in attributes to follow.
And some bug fixes:
* Parse attributes after declarator-ids, even if they are not simple identifiers.
* Do not accept attributes after a parenthesized declarator.
* Accept attributes after an array size in a new-type-id.
* Partially disamiguate 'delete' followed by a lambda. More work is required
here for the case where the lambda-introducer is '[]'.
llvm-svn: 154369
a type specifier and can be combined with unsigned. This allows libstdc++4.7 to
be used with clang in c++98 mode.
Several other changes are still required for libstdc++4.7 to work with clang in
c++11 mode.
llvm-svn: 153999
constructor, but X is not a known typename, check whether the tokens could
possibly match the syntax of a declarator before concluding that it isn't
a constructor. If it's definitely ill-formed, assume it is a constructor.
Empirical evidence suggests that this pattern is much more often a
constructor with a typoed (or not-yet-declared) type name than any of the
other possibilities, so the extra cost of the check is not expected to be
problematic.
llvm-svn: 153488
being defined here: [] () -> struct S {} does not define struct S.
In passing, implement DR1318 (syntactic disambiguation of 'final').
llvm-svn: 152551
defined here, but not semantically, so
new struct S {};
is always ill-formed, even if there is a struct S in scope.
We also had a couple of bugs in ParseOptionalTypeSpecifier caused by it being
under-loved (due to it only being used in a few places) so merge it into
ParseDeclarationSpecifiers with a new DeclSpecContext. To avoid regressing, this
required improving ParseDeclarationSpecifiers' diagnostics in some cases. This
also required teaching ParseSpecifierQualifierList about constexpr... which
incidentally fixes an issue where we'd allow the constexpr specifier in other
bad places.
llvm-svn: 152549
paren/brace/bracket tracking (the Consume* functions already did it),
removing the use of ConsumeAnyToken(), and moving the hot paths inline
with the error paths out-of-line.
llvm-svn: 152274
This submission improves Clang sema handling by using Clang tablegen
to generate common boilerplate code. As a start, it implements AttributeList
enumerator generation and case statements for AttributeList::getKind.
A new field "SemaHandler" is introduced in Attr.td and by default set to 1
as most of attributes in Attr.td have semantic checking in Sema. For a small
number of attributes that don't appear in Sema, the value is set to 0.
Also there are a small number of attributes that only appear in Sema but not
in Attr.td. Currently these attributes are still hardcoded in Sema AttributeList.
Reviewed by Delesley Hutchins.
llvm-svn: 152169
The bug that was caught by Apple's internal buildbots was valid and also showed another bug in my implementation.
These are now fixed, with regression tests added to catch them both (not Darwin-specific).
Original log:
====================
Revert r151638 because it causes assertion hit on PCH creation for Cocoa.h
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
====================
llvm-svn: 151712
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
llvm-svn: 151667
C++11, and with braced-init-list initializers in conditions. This exposed an
ambiguity with enum underlying types versus bitfields, which we resolve by
treating 'enum E : T {' as always defining an enumeration (even if it would
only successfully parse as a bitfield). This appears to be g++ compatible.
llvm-svn: 151227
default arguments of function parameters. This simple-sounding task is
complicated greatly by two issues:
(1) Default arguments aren't actually a real context, so we need to
maintain extra state within lambda expressions to track when a
lambda was actually in a default argument.
(2) At the time that we parse a default argument, the FunctionDecl
doesn't exist yet, so lambda closure types end up in the enclosing
context. It's not clear that we ever want to change that, so instead
we introduce the notion of the "effective" context of a declaration
for the purposes of name mangling.
llvm-svn: 151011
For compatibility with gcc, clang will now parse gcc attributes on
function definitions, but issue a warning if the attribute is not a
thread safety attribute. Warning controlled by -Wgcc-compat.
llvm-svn: 150698
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
Parsing of @implementations was based on modifying global state from
the parser; the logic for late parsing of methods was spread in multiple places
making it difficult to have a robust error recovery.
-it was difficult to ensure that we don't neglect parsing the lexed methods.
-it was difficult to setup the original objc container context for parsing the lexed methods
after completing ParseObjCAtImplementationDeclaration and returning to top level context.
Enhance parsing of @implementations by centralizing it in Parser::ParseObjCAtImplementationDeclaration().
ParseObjCAtImplementationDeclaration now returns only after an @implementation is fully parsed;
all the data and logic for late parsing of methods is now in one place.
This allows us to provide code-completion for late parsed methods with mis-matched braces.
rdar://10775381
llvm-svn: 149987
Old error:
plusequaldeclare1.cc:3:8: error: expected ';' at end of declaration
int x += 6;
^
;
New error:
plusequaldeclare1.cc:3:9: error: invalid '+=' at end of declaration; did you
mean '='?
int x += 6;
^~
=
llvm-svn: 148433
- If the declarator is at the start of a line, and the previous line contained
another declarator and ended with a comma, then that comma was probably a
typo for a semicolon:
int n = 0, m = 1, l = 2, // k = 5;
myImportantFunctionCall(); // oops!
- If removing the parentheses would correctly initialize the object, then
produce a note suggesting that fix.
- Otherwise, if there is a simple initializer we can suggest which performs
value-initialization, then provide a note suggesting a correction to that
initializer.
Sema::Declarator now tracks the location of the comma prior to the declarator in
the declaration, if there is one, to facilitate providing the note. The code to
determine an appropriate initializer from the -Wuninitialized warning has been
factored out to allow use in both that and -Wvexing-parse.
llvm-svn: 148072
- reject definitions of enums within friend declarations
- require 'enum', not 'enum class', for non-declaring references to scoped
enumerations
llvm-svn: 147824
the Semantic Powers to only warn on class types (or dependent types), where the
constructor or destructor could do something interesting.
llvm-svn: 147642
scope, when no other indication is provided that the user intended to declare a
function rather than a variable.
Remove some false positives from the existing 'parentheses disambiguated as a
function' warning by suppressing it when the declaration is marked as 'typedef'
or 'extern'.
Add a new warning group -Wvexing-parse containing both of these warnings.
The new warning is enabled by default; despite a number of false positives (and
one bug) in clang's test-suite, I have only found genuine bugs with it when
running it over a significant quantity of real C++ code.
llvm-svn: 147599
declaration tickles a bug in the way we handle visibility pragmas.
The improvement to error recovery for template function definitions declared
with the 'typedef' specifier in r145372 is unrelated and not reverted here.
llvm-svn: 145541
declaration at namespace scope is followed by a semicolon and an open-brace
(or in C++, a 'try', ':' or '='), then the error is probably a function
definition with a spurious ';', rather than a mysterious '{'.
llvm-svn: 145372
instead of a semicolon (as sometimes happens during refactorings). When such a
comma is seen at the end of a line, and is followed by something which can't
possibly be a declarator (or even something which might be a plausible typo for
a declarator), suggest that a semicolon was intended.
llvm-svn: 142544
The main motivation was to do typo correction in C++ "new" statements,
though picking it up in other places where type names are expected was
pretty much a freebie.
llvm-svn: 141621
which enables support for C99 storage-class specifiers.
This extension is intended to be used by implementations to implement
OpenCL C built-in functions.
llvm-svn: 141271
Previously we would cut off the source file buffer at the code-completion
point; this impeded code-completion inside C++ inline methods and,
recently, with buffering ObjC methods.
Have the code-completion inserted into the source buffer so that it can
be buffered along with a method body. When we actually hit the code-completion
point the cut-off lexing or parsing.
Fixes rdar://10056932&8319466
llvm-svn: 139086
to modernity. Instead of passing down individual
context objects from parser to sema, establish decl
context in parser and have sema access current context
as needed. I still need to take of Doug's comment for
minor cleanups.
llvm-svn: 138040
This patch special cases the parser for thread safety attributes so that all
attribute arguments are put in the argument list (instead of a special
parameter) since arguments may not otherwise resolve correctly without two-token
lookahead.
This patch also adds checks to make sure that attribute arguments are
lockable objects.
llvm-svn: 137130
lifetime is well-known and restricted, cleaning them up manually is easy to miss and cause a leak.
Use it to plug the leaking of TemplateIdAnnotation objects. rdar://9634138.
llvm-svn: 133610
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
They are actually grammatically considered definitions and parsed
accordingly.
This fixes the outstanding bugs regarding defaulting functions after
their declarations.
We now really nicely diagnose the following construct (try it!)
int foo() = delete, bar;
Still todo: Defaulted functions other than default constructors
Test cases (including for the above construct)
llvm-svn: 131228
Explictly defaultedness is correctly reflected on the AST, but there are
no changes to how that affects the definition of functions or much else
really.
llvm-svn: 130974
as a keyword for the __is_signed type trait. Cope with this conflict
via some hackish recovery: if we see a declaration of the form
static const bool __is_signed
then we stop treating __is_signed as a keyword and instead treat it as
an identifier. It's ugly, but it's better than making the __is_signed
type trait conditional on some language flag. Fixes PR9804.
llvm-svn: 130399
performs name lookup for an identifier and resolves it to a
type/expression/template/etc. in the same step. This scheme is
intended to improve both performance (by reducing the number of
redundant name lookups for a given identifier token) and error
recovery (by giving Sema a chance to correct type names before the
parser has decided that the identifier isn't a type name). For
example, this allows us to properly typo-correct type names at the
beginning of a statement:
t.c:6:3: error: use of undeclared identifier 'integer'; did you mean
'Integer'?
integer *i = 0;
^~~~~~~
Integer
t.c:1:13: note: 'Integer' declared here
typedef int Integer;
^
Previously, we wouldn't give a Fix-It because the typo correction
occurred after the parser had checked whether "integer" was a type
name (via Sema::getTypeName(), which isn't allowed to typo-correct)
and therefore decided to parse "integer * i = 0" as an expression. By
typo-correcting earlier, we typo-correct to the type name Integer and
parse this as a declaration.
Moreover, in this context, we can also typo-correct identifiers to
keywords, e.g.,
t.c:7:3: error: use of undeclared identifier 'vid'; did you mean
'void'?
vid *p = i;
^~~
void
and recover appropriately.
Note that this is very much a work-in-progress. The new
Sema::ClassifyName is only used for expression-or-declaration
disambiguation in C at the statement level. The next steps will be to
make this work for the same disambiguation in C++ (where
functional-style casts make some trouble), then push it
further into the parser to eliminate more redundant name lookups.
Fixes <rdar://problem/7963833> for C and starts us down the path of
<rdar://problem/8172000>.
llvm-svn: 130082
AttributeLists do not accumulate over the lifetime of parsing, but are
instead reused. Also make the arguments array not require a separate
allocation, and make availability attributes store their stuff in
augmented memory, too.
llvm-svn: 128209
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
several ways. We now warn for more of the return types, and correctly
locate the ignored ones. Also adds fix-it hints to remove the ignored
qualifiers. Fixes much of PR9058, although not all of it.
Patch by Hans Wennborg, a couple of minor style tweaks from me.
llvm-svn: 126321
enum X : long { Value = 0x100000000 };
when in Microsoft-extension mode (-fms-extensions). This (now C++0x)
feature has been supported since Microsoft Visual Studio .NET 2003.
llvm-svn: 126243
* Flag indicating 'we're parsing this auto typed variable's initializer' moved from VarDecl to Sema
* Temporary template parameter list for auto deduction is now allocated on the stack.
* Deduced 'auto' types are now uniqued.
llvm-svn: 126139
separately handle the case of a local declaration-specifier list,
including all types in the set of options. Fixes
<rdar://problem/8790735> and <rdar://problem/8662831>.
llvm-svn: 125594
allow ref-qualifiers on function types used as template type
arguments. GNU actually allows cv-qualifiers on function types in many
places where it shouldn't, so we currently categorize this as a GNU
extension.
llvm-svn: 124584
and turn on __has_feature(cxx_rvalue_references). The core rvalue
references proposal seems to be fully implemented now, pending lots
more testing.
llvm-svn: 124169
parameter packs (C++0x [dcl.fct]p13), including disambiguation between
unnamed function parameter packs and varargs (C++0x [dcl.fct]p14) for
cases like
void f(T...)
where T may or may not contain unexpanded parameter packs.
llvm-svn: 122520
disambiguate between an expression (for a bit-field width) and a type
(for a fixed underlying type). Since the disambiguation can be
expensive (due to tentative parsing), we perform a simplistic
disambiguation based on one-token lookahead before going into the
full-blown tentative parsing. Based on a patch by Daniel Wallin.
llvm-svn: 120582
protocol-qualifier list without a leading type (e.g., <#blah#>), don't
complain about it being an archaic protocol-qualifier list unless it
actually parses as one.
llvm-svn: 119805
using new/delete and OwningPtrs. After memory profiling Clang, I witnessed periodic leaks of these
objects; digging deeper into the code, it was clear that our management of these objects was a mess. The ownership rules were murky at best, and not always followed. Worse, there are plenty of error paths where we could screw up.
This patch introduces AttributeList::Factory, which is a factory class that creates AttributeList
objects and then blows them away all at once. While conceptually simple, most of the changes in
this patch just have to do with migrating over to the new interface. Most of the changes have resulted in some nice simplifications.
This new strategy currently holds on to all AttributeList objects during the lifetime of the Parser
object. This is easily tunable. If we desire to have more bound the lifetime of AttributeList
objects more precisely, we can have the AttributeList::Factory object (in Parser) push/pop its
underlying allocator as we enter/leave key methods in the Parser. This means that we get
simple memory management while still having the ability to finely control memory use if necessary.
Note that because AttributeList objects are now BumpPtrAllocated, we may reduce malloc() traffic
in many large files with attributes.
This fixes the leak reported in: <rdar://problem/8650003>
llvm-svn: 118675
missing the opening bracket '[', e.g.,
NSArray <CC>
at function scope. Previously, we would only give trivial completions
(const, volatile, etc.), because we're in a "declaration name"
scope. Now, we also provide completions for class methods of NSArray,
e.g.,
alloc
Note that we already had support for this after the first argument,
e.g.,
NSArray method:x <CC>
would get code completion for class methods of NSArray whose selector
starts with "method:". This was already present because we recover
as if NSArray method:x were a class message send missing the opening
bracket (which was committed in r114057).
llvm-svn: 114078
sends. These are far trickier than instance messages, because we
typically have something like
NSArray alloc]
where it appears to be a declaration of a variable named "alloc" up
until we see the ']' (or a ':'), and at that point we can't backtrace.
So, we use a combination of syntactic and semantic disambiguation to
treat this as a message send only when the type is an Objective-C type
and it has the syntax of a class message send (which would otherwise
be ill-formed).
llvm-svn: 114057
used in the default function argument as "used". Instead, when we
actually use the default argument, make another pass over the
expression to mark any used declarations as "used" at that point. This
addresses two kinds of related problems:
1) We were marking some declarations "used" that shouldn't be,
because we were marking them too eagerly.
2) We were failing to mark some declarations as "used" when we
should, if the first time it was instantiated happened to be an
unevaluated context, we wouldn't mark them again at a later point.
I've also added a potentially-handy visitor class template
EvaluatedExprVisitor, which only visits the potentially-evaluated
subexpressions of an expression. I bet this would have been useful for
noexcept...
Fixes PR5810 and PR8127.
llvm-svn: 113700
with comma-separated lists. We never actually used the comma
locations, nor did we store them in the AST, but we did manage to
waste time during template instantiation to produce fake locations.
llvm-svn: 113495
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244
declarator. Here, we can only see a few things (e.g., cvr-qualifiers,
nested name specifiers) and we do not want to provide other non-macro
completions. Previously, we would end up in recovery mode and would
provide a large number of non-relevant completions.
llvm-svn: 111818
- move DeclSpec &c into the Sema library
- move ParseAST into the Parse library
Reflect this change in a thousand different includes.
Reflect this change in the link orders.
llvm-svn: 111667
lexed method declarations.
This avoid interference with tokens coming after the point where the default arg tokens were 'injected', e.g. for
typedef struct Inst {
void m(int x=0);
} *InstPtr;
when parsing '0' the next token would be '*' and things would be messed up.
llvm-svn: 110436
a function prototype is followed by a declarator if we
aren't parsing a K&R style identifier list.
Also, avoid skipping randomly after a declaration if a
semicolon is missing. Before we'd get:
t.c:3:1: error: expected function body after function declarator
void bar();
^
Now we get:
t.c:1:11: error: invalid token after top level declarator
void foo()
^
;
llvm-svn: 108105
allows Sema some limited access to the current scope, which we only
use in one way: when Sema is performing some kind of declaration that
is not directly driven by the parser (e.g., due to template
instantiatio or lazy declaration of a member), we can find the Scope
associated with a DeclContext, if that DeclContext is still in the
process of being parsed.
Use this to make the implicit declaration of special member functions
in a C++ class more "scope-less", rather than using the NULL Scope hack.
llvm-svn: 107491
In a line like:
(;
the semicolon leaves Parser:ParenCount unbalanced (it's 1 even though we stopped looking for a right paren).
This may affect later parsing and result in bad recovery for parsing errors.
llvm-svn: 106213