Summary:
These all had somewhat custom file headers with different text from the
ones I searched for previously, and so I missed them. Thanks to Hal and
Kristina and others who prompted me to fix this, and sorry it took so
long.
Reviewers: hfinkel
Subscribers: mcrosier, javed.absar, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60406
llvm-svn: 357941
This is part of an ongoing attempt at making 512 bit vectors illegal in the X86 backend type legalizer due to CPU frequency penalties associated with wide vectors on Skylake Server CPUs. We want the loop vectorizer to be able to emit IR containing wide vectors as intermediate operations in vectorized code and allow these wide vectors to be legalized to 256 bits by the X86 backend even though we are targetting a CPU that supports 512 bit vectors. This is similar to what happens with an AVX2 CPU, the vectorizer can emit wide vectors and the backend will split them. We want this splitting behavior, but still be able to use new Skylake instructions that work on 256-bit vectors and support things like masking and gather/scatter.
Of course if the user uses explicit vector code in their source code we need to not split those operations. Especially if they have used any of the 512-bit vector intrinsics from immintrin.h. And we need to make it so that merely using the intrinsics produces the expected code in order to be backwards compatible.
To support this goal, this patch adds a new IR function attribute "min-legal-vector-width" that can indicate the need for a minimum vector width to be legal in the backend. We need to ensure this attribute is set to the largest vector width needed by any intrinsics from immintrin.h that the function uses. The inliner will be reponsible for merging this attribute when a function is inlined. We may also need a way to limit inlining in the future as well, but we can discuss that in the future.
To make things more complicated, there are two different ways intrinsics are implemented in immintrin.h. Either as an always_inline function containing calls to builtins(can be target specific or target independent) or vector extension code. Or as a macro wrapper around a taget specific builtin. I believe I've removed all cases where the macro was around a target independent builtin.
To support the always_inline function case this patch adds attribute((min_vector_width(128))) that can be used to tag these functions with their vector width. All x86 intrinsic functions that operate on vectors have been tagged with this attribute.
To support the macro case, all x86 specific builtins have also been tagged with the vector width that they require. Use of any builtin with this property will implicitly increase the min_vector_width of the function that calls it. I've done this as a new property in the attribute string for the builtin rather than basing it on the type string so that we can opt into it on a per builtin basis and avoid any impact to target independent builtins.
There will be future work to support vectors passed as function arguments and supporting inline assembly. And whatever else we can find that isn't covered by this patch.
Special thanks to Chandler who suggested this direction and reviewed a preview version of this patch. And thanks to Eric Christopher who has had many conversations with me about this issue.
Differential Revision: https://reviews.llvm.org/D48617
llvm-svn: 336583
Previously we only checked the sse feature, but this means that if you passed -mno-mmx, the builtins/intrinsics wouldn't be disabled in the frontend and would instead fail backend isel.
llvm-svn: 333980
I think this is a holdover from when we used to declare variables inside the macros. And then its been copy and pasted forward for years every time a new macro intrinsic gets added.
Interestingly this caused some tests for IRGen to be slightly more optimized. We now return a zeroinitializer directly instead of going through a store+load.
It also removed a bogus error message on another test.
llvm-svn: 333613
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
Separated very long brief sections into two sections.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 303031
Improved doxygen comments for the following intrinsics headers: __wmmintrin_pclmul.h, bmiintrin.h, emmintrin.h, f16cintrin.h, immintrin.h, mmintrin.h, pmmintrin.h, tmmintrin.h
Added \n commands to insert a line breaks where necessary, since one long line of documentation is nearly unreadable.
Formatted comments to fit into 80 chars.
In some cases added \a command in front of the parameter names to display them in italics.
llvm-svn: 290561
Tagged parameter names with \a doxygen command to display parameters in italics.
Added \n commands to insert a line break to make the documentation more readable.
Formatted comments to fit into 80 chars.
llvm-svn: 290455
The doxygen comments are automatically generated based on Sony's intrinsics document.
I got an OK from Eric Christopher to commit doxygen comments without prior code review upstream.
llvm-svn: 262565
This involved removing the conditional inclusion and replacing them
with target attributes matching the original conditional inclusion
and checks. The testcase update removes the macro checks for each
file and replaces them with usage of the __target__ attribute, e.g.:
int __attribute__((__target__(("sse3")))) foo(int a) {
_mm_mwait(0, 0);
return 4;
}
This usage does require the enclosing function have the requisite
__target__ attribute for inlining and code generation - also for
any macro intrinsic uses in the enclosing function. There's no change
for existing uses of the intrinsic headers.
llvm-svn: 239883
Several of the intrinsic headers were using plain non-reserved identifiers.
C++11 17.6.4.3.2 [global.names] p1 reservers names containing a double
begining with an underscore followed by an uppercase letter for any use.
I think I got them all, but open to being corrected. For the most part I
didn't bother updating function-like macro parameter names because I don't
believe they're subject to any such collission - though some function-like
macros already follow this convention (I didn't update them in part because
the churn was more significant as several function-like macros use the double
underscore prefixed version of the same name as a parameter in their
implementation)
llvm-svn: 172666
Stop multiplying constant by 8 accordingly in the header and change
intrinsic definition for what types we expect.
Add to existing palignr test to check that we're emitting the correct things.
llvm-svn: 101332