directly instead of a user Instruction. This allows them to test
whether a def dominates a particular operand if the user instruction
is a PHI.
llvm-svn: 154631
There is an assert at line 558 in ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA).
This assert needs to addressed for post RA scheduler. Until that assert is addressed,
any passes that uses post ra scheduler will fail. So, I am temporarily disabling the
hexagon tests until that fix is in.
The assert is as follows:
assert(!MI->isTerminator() && !MI->isLabel() &&
"Cannot schedule terminators or labels!");
llvm-svn: 154617
of zero-initialized sections, virtual sections and common symbols
and preventing the loading of sections which are not required for
execution such as debug information.
Patch by Andy Kaylor!
llvm-svn: 154610
- FCOPYSIGN nodes that have operands of different types were not handled.
- Different code was generated depending on the endianness of the target.
Additionally, code is added that emits INS and EXT instructions, if they are
supported by target (they are R2 instructions).
llvm-svn: 154540
While there is an encoding for it in VUZP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11222366
llvm-svn: 154511
While there is an encoding for it in VZIP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11221911
llvm-svn: 154505
FoldingSet is implemented as a chained hash table. When there is a hash
collision during insertion, which is common as we fill the table until a
load factor of 2.0 is hit, we walk the chained elements, comparing every
operand with the new element's operands. This can be very expensive if the
MDNode has many operands.
We sacrifice a word of space in MDNode to cache the full hash value, reducing
compares on collision to a minimum. MDNode grows from 28 to 32 bytes + operands
on x86. On x86_64 the new bits fit nicely into existing padding, not growing
the struct at all.
The actual speedup depends a lot on the test case and is typically between
1% and 2% for C++ code with clang -c -O0 -g.
llvm-svn: 154497
Fix a dagcombine optimization which assumes that the vsetcc result type is always
of the same size as the compared values. This is ture for SSE/AVX/NEON but not
for all targets.
llvm-svn: 154490
Original message:
Modify the code that lowers shuffles to blends from using blendvXX to vblendXX.
blendV uses a register for the selection while Vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154483
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
llvm-svn: 154480
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
Allow cheap instructions to be hoisted if they are register pressure
neutral or better. This happens if the instruction is the last loop use
of another virtual register.
Only expensive instructions are allowed to increase loop register
pressure.
llvm-svn: 154455
Hoisting a value that is used by a PHI in the loop will introduce a
copy because the live range is extended to cross the PHI.
The same applies to PHIs in exit blocks.
Also use this opportunity to make HasLoopPHIUse() non-recursive.
llvm-svn: 154454
ConstantFP::get(Type*, double) is unreliably host-specific:
it can't handle a type like PPC128 on an x86 host. It even
has a comment to that effect: "This should only be used for
simple constant values like 2.0/1.0 etc, that are
known-valid both as host double and as the target format."
Instead, use APFloat. While we're at it, randomize the floating
point value more thoroughly; it was previously limited
to the range 0 to 2**19 - 1.
PR12451.
llvm-svn: 154446
LangRef.html says:
"There are no arrays, vectors or constants of this type."
This was hitting assertions when passing the -generate-x86-mmx
option.
PR12452.
llvm-svn: 154445
- don't isntrument reads from constant globals.
Saves ~1.5% of instrumented instructions on CPU2006
(counting static instructions, not their execution).
- don't insrument reads from vtable (which is a global constant too).
Saves ~5%.
I did not measure the run-time impact of this,
but it is certainly non-negative.
llvm-svn: 154444
StringMap. This was redundant and unnecessarily bloated the MDString class.
Because the MDString class is a "Value" and will never have a "name", and
because the Name field in the Value class is a pointer to a StringMap entry, we
repurpose the Name field for an MDString. It stores the StringMap entry in the
Name field, and uses the normal methods to get the string (name) back.
PR12474
llvm-svn: 154429
a write to the same temp follows in the same BB.
Also add stats printing.
On Spec CPU2006 this optimization saves roughly 4% of instrumented reads
(which is 3% of all instrumented accesses):
Writes : 161216
Reads : 446458
Reads-before-write: 18295
llvm-svn: 154418
We were incorrectly conflating some add variants which don't have a
cc_out operand with the mirroring sub encodings, which do. Part of the
awesome non-orthogonality legacy of thumb1. Similarly, handling of
add/sub of an immediate was sometimes incorrectly removing the cc_out
operand for add/sub register variants.
rdar://11216577
llvm-svn: 154411
blendv uses a register for the selection while vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
llvm-svn: 154396
the loop header has a non-loop predecessor which has been pre-fused into
its chain due to unanalyzable branches. In this case, rotating the
header into the body of the loop in order to place a loop exit at the
bottom of the loop is a Very Bad Idea as it makes the loop
non-contiguous.
I'm working on a good test case for this, but it's a bit annoynig to
craft. I should get one shortly, but I'm submitting this now so I can
begin the (lengthy) performance analysis process. An initial run of LNT
looks really, really good, but there is too much noise there for me to
trust it much.
llvm-svn: 154395
Take this opportunity to generalize the indirectbr bailout logic for
loop transformations. CFG transformations will never get indirectbr
right, and there's no point trying.
llvm-svn: 154386
This is a new algorithm that finds sets of register units that can be
used to model registers pressure. This handles arbitrary, overlapping
register classes. Each register class is associated with a (small)
list of pressure sets. These are the dimensions of pressure affected
by the register class's liveness.
llvm-svn: 154374
This is a new algorithm that associates registers with weighted
register units to accuretely model their effect on register
pressure. This handles registers with multiple overlapping
subregisters. It is possible, but almost inconceivable that the
algorithm fails to find an exact solution for a target description. If
an exact solution cannot be found, an inexact, but reasonable solution
will be chosen.
llvm-svn: 154373
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
llvm-svn: 154370
in-register, such that we can use a single vector store rather then a
series of scalar stores.
For func_4_8 the generated code
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vmov.u16 r0, d16[3]
strb r0, [r2, #3]
vmov.u16 r0, d16[2]
strb r0, [r2, #2]
vmov.u16 r0, d16[1]
strb r0, [r2, #1]
vmov.u16 r0, d16[0]
strb r0, [r2]
bx lr
becomes
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vuzp.8 d16, d17
vst1.32 {d16[0]}, [r2, :32]
bx lr
I'm not fond of how this combine pessimizes 2012-03-13-DAGCombineBug.ll,
but I couldn't think of a way to judiciously apply this combine.
This
ldrh r0, [r0, #4]
strh r0, [r1]
becomes
vldr d16, [r0]
vmov.u16 r0, d16[2]
vmov.32 d16[0], r0
vuzp.16 d16, d17
vst1.32 {d16[0]}, [r1, :32]
PR11158
rdar://10703339
llvm-svn: 154340
This patch restores TwoAddressInstructionPass's pre-r153892 behaviour when
rescheduling instructions in TryInstructionTransform. Hopefully this will fix
PR12493. To refix PR11861, lowering of INSERT_SUBREGS is deferred until after
the copy that unties the operands is emitted (this seems to be a more
appropriate fix for that issue anyway).
llvm-svn: 154338
A couple of cases where we were accidentally creating constant conditions by
something like "x == a || b" instead of "x == a || x == b". In one case a
conditional & then unreachable was used - I transformed this into a direct
assert instead.
llvm-svn: 154324
x86 addressing modes. This allows PIE-based TLS offsets to fit directly
into an addressing mode immediate offset, which is the last remaining
code quality issue from PR12380. With this patch, that PR is completely
fixed.
To understand why this patch is correct to match these offsets into
addressing mode immediates, break it down by cases:
1) 32-bit is trivially correct, and unmodified here.
2) 64-bit non-small mode is unchanged and never matches.
3) 64-bit small PIC code which is RIP-relative is handled specially in
the match to try to fit RIP into the base register. If it fails, it
now early exits. This behavior is unchanged by the patch.
4) 64-bit small non-PIC code which is not RIP-relative continues to work
as it did before. The reason these immediates are safe is because the
ABI ensures they fit in small mode. This behavior is unchanged.
5) 64-bit small PIC code which is *not* using RIP-relative addressing.
This is the only case changed by the patch, and the primary place you
see it is in TLS, either the win64 section offset TLS or Linux
local-exec TLS model in a PIC compilation. Here the ABI again ensures
that the immediates fit because we are in small mode, and any other
operations required due to the PIC relocation model have been handled
externally to the Wrapper node (extra loads etc are made around the
wrapper node in ISelLowering).
I've tested this as much as I can comparing it with GCC's output, and
everything appears safe. I discussed this with Anton and it made sense
to him at least at face value. That said, if there are issues with PIC
code after this patch, yell and we can revert it.
llvm-svn: 154304
comprehensive testing of TLS codegen for x86. Convert all of the ones
that were still using grep to use FileCheck. Remove some redundancies
between them.
Perhaps most interestingly expand the test cases so that they actually
fully list the instruction snippet being tested. TLS operations are
*very* narrowly defined, and so these seem reasonably stable. More
importantly, the existing test cases already were crazy fine grained,
expecting specific registers to be allocated. This just clarifies that
no *other* instructions are expected, and fills in some crucial gaps
that weren't being tested at all.
This will make any subsequent changes to TLS much more clear during
review.
llvm-svn: 154303
when -ffast-math, i.e. don't just always do it if the reciprocal can
be formed exactly. There is already an IR level transform that does
that, and it does it more carefully.
llvm-svn: 154296
optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
llvm-svn: 154294
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
llvm-svn: 154292
where a chain outside of the loop block-set ended up in the worklist for
scheduling as part of the contiguous loop. However, asserting the first
block in the chain is in the loop-set isn't a valid check -- we may be
forced to drag a chain into the worklist due to one block in the chain
being part of the loop even though the first block is *not* in the loop.
This occurs when we have been forced to form a chain early due to
un-analyzable branches.
No test case here as I have no idea how to even begin reducing one, and
it will be hopelessly fragile. We have to somehow end up with a loop
header of an inner loop which is a successor of a basic block with an
unanalyzable pair of branch instructions. Ow. Self-host triggers it so
it is unlikely it will regress.
This at least gets block placement back to passing selfhost and the test
suite. There are still a lot of slowdown that I don't like coming out of
block placement, although there are now also a lot of speedups. =[ I'm
seeing swings in both directions up to 10%. I'm going to try to find
time to dig into this and see if we can turn this on for 3.1 as it does
a really good job of cleaning up after some loops that degraded with the
inliner changes.
llvm-svn: 154287
GEPs, bit casts, and stores reaching it but no other instructions. These
often show up during the iterative processing of the inliner, SROA, and
DCE. Once we hit this point, we can completely remove the alloca. These
were actually showing up in the final, fully optimized code in a bunch
of inliner tests I've been working on, and notably they show up after
LLVM finishes optimizing away all function calls involved in
hash_combine(a, b).
llvm-svn: 154285
Previously we used three instructions to broadcast an immediate value into a
vector register.
On Sandybridge we continue to load the broadcasted value from the constant pool.
llvm-svn: 154284
An MDNode has a list of MDNodeOperands allocated directly after it as part of
its allocation. Therefore, the Parent of the MDNodeOperands can be found by
walking back through the operands to the beginning of that list. Mark the first
operand's value pointer as being the 'first' operand so that we know where the
beginning of said list is.
This saves a *lot* of space during LTO with -O0 -g flags.
llvm-svn: 154280
shuffle node because it could introduce new shuffle nodes that were not
supported efficiently by the target.
2. Add a more restrictive shuffle-of-shuffle optimization for cases where the
second shuffle reverses the transformation of the first shuffle.
llvm-svn: 154266
reciprocal if converting to the reciprocal is exact. Do it even if inexact
if -ffast-math. This substantially speeds up ac.f90 from the polyhedron
benchmarks.
llvm-svn: 154265
optimizers could do this for us, but expecting partial SROA of classes
with template methods through cloning is probably expecting too much
heroics. With this change, the begin/end pointer pairs which indicate
the status of each loop iteration are actually passed directly into each
layer of the combine_data calls, and the inliner has a chance to see
when most of the combine_data function could be deleted by inlining.
Similarly for 'length'.
We have to be careful to limit the places where in/out reference
parameters are used as those will also defeat the inliner / optimizers
from properly propagating constants.
With this change, LLVM is able to fully inline and unroll the hash
computation of small sets of values, such as two or three pointers.
These now decompose into essentially straight-line code with no loops or
function calls.
There is still one code quality problem to be solved with the hashing --
LLVM is failing to nuke the alloca. It removes all loads from the
alloca, leaving only lifetime intrinsics and dead(!!) stores to the
alloca. =/ Very unfortunate.
llvm-svn: 154264
speculate. Without this, loop rotate (among many other places) would
suddenly stop working in the presence of debug info. I found this
looking at loop rotate, and have augmented its tests with a reduction
out of a very hot loop in yacr2 where failing to do this rotation costs
sometimes more than 10% in runtime performance, perturbing numerous
downstream optimizations.
This should have no impact on performance without debug info, but the
change in performance when debug info is enabled can be extreme. As
a consequence (and this how I got to this yak) any profiling of
performance problems should be treated with deep suspicion -- they may
have been wildly innacurate of debug info was enabled for profiling. =/
Just a heads up.
llvm-svn: 154263
The tLDRr instruction with the last register operand set to the zero register
prints in assembly as if no register was specified, and the assembler encodes
it as a tLDRi instruction with a zero immediate. With the integrated assembler,
that zero register gets emitted as "r0", so we get "ldr rx, [ry, r0]" which
is broken. Emit the instruction as tLDRi with a zero immediate. I don't
know if there's a good way to write a testcase for this. Suggestions welcome.
Opportunities for follow-up work:
1) The asm printer should complain if a non-optional register operand is set
to the zero register, instead of silently dropping it.
2) The integrated assembler should complain in the same situation, instead of
silently emitting the operand as "r0".
llvm-svn: 154261
Cygwin-1.7 supports dw2. Some recent mingw distros support one, too.
I have confirmed test-suite/SingleSource/Benchmarks/Shootout-C++/except.cpp can pass on Cygwin.
llvm-svn: 154247
by default.
This is a behaviour configurable in the MCAsmInfo. I've decided to turn
it on by default in (possibly optimistic) hopes that most assemblers are
reasonably sane. If this proves a problem, switching to default seems
reasonable.
I'm not sure if this is the opportune place to test, but it seemed good
to make sure it was tested somewhere.
llvm-svn: 154235
After register masks were introdruced to represent the call clobbers, it
is no longer necessary to have duplicate instruction for iOS.
llvm-svn: 154209
disassembler requires a MCSubtargetInfo and a
MCInstrInfo to exist in order to initialize the
instruction printer and disassembler; however,
although the printer and disassembler keep
references to these objects they do not own them.
Previously, the MCSubtargetInfo and MCInstrInfo
objects were just leaked.
I have extended LLVMDisasmContext to own these
objects and delete them when it is destroyed.
llvm-svn: 154192
simplification has been performed. This is a bit less efficient
(requires another ilist walk of the basic blocks) but shouldn't matter
in practice. More importantly, it's just too much work to keep track of
all the various ways the return instructions can be mutated while
simplifying them. This fixes yet another crasher, reported by Daniel
Dunbar.
llvm-svn: 154179
dead code, including dead return instructions in some cases. Otherwise,
we end up having a bogus poniter to a return instruction that blows up
much further down the road.
It turns out that this pattern is both simpler to code, easier to update
in the face of enhancements to the inliner cleanup, and likely cheaper
given that it won't add dead instructions to the list.
Thanks to John Regehr's numerous test cases for teasing this out.
llvm-svn: 154157
We had special instructions for iOS because r9 is call-clobbered, but
that is represented dynamically by the register mask operands now, so
there is no need for the pseudo-instructions.
llvm-svn: 154144
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
llvm-svn: 154141
The empty 1-argument operator delete is for the benefit of the
destructor. A couple of spot checks of running yaml-bench under
valgrind against a few of the files under test/YAMLParser did
not reveal any leaks introduced by this change.
llvm-svn: 154137
Consider the following program:
$ cat main.c
void foo(void) { }
int main(int argc, char *argv[]) {
foo();
return 0;
}
$ cat bundle.c
extern void foo(void);
void bar(void) {
foo();
}
$ clang -o main main.c
$ clang -o bundle.so bundle.c -bundle -bundle_loader ./main
$ nm -m bundle.so
0000000000000f40 (__TEXT,__text) external _bar
(undefined) external _foo (from executable)
(undefined) external dyld_stub_binder (from libSystem)
$ clang -o main main.c -O4
$ clang -o bundle.so bundle.c -bundle -bundle_loader ./main
Undefined symbols for architecture x86_64:
"_foo", referenced from:
_bar in bundle-elQN6d.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
The linker was told that the 'foo' in 'main' was 'internal' and had no uses, so
it was dead stripped.
Another situation is something like:
define void @foo() {
ret void
}
define void @bar() {
call asm volatile "call _foo" ...
ret void
}
The only use of 'foo' is inside of an inline ASM call. Since we don't look
inside those for uses of functions, we don't specify this as a "use."
Get around this by not invoking the 'internalize' pass by default. This is an
admitted hack for LTO correctness.
<rdar://problem/11185386>
llvm-svn: 154124
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
llvm-svn: 154123
LSR always tries to make the ICmp in the loop latch use the incremented
induction variable. This allows the induction variable to be kept in a
single register.
When the induction variable limit is equal to the stride,
SimplifySetCC() would break LSR's hard work by transforming:
(icmp (add iv, stride), stride) --> (cmp iv, 0)
This forced us to use lea for the IC update, preventing the simpler
incl+cmp.
<rdar://problem/7643606>
<rdar://problem/11184260>
llvm-svn: 154119
of the BBVectorizePass without using command line option. As pointed out
by Hal, we can ask the TargetLoweringInfo for the architecture specific
VectorizeConfig to perform vectorizing with architecture specific
information.
llvm-svn: 154096
the caller requested a null-terminated one.
When mapping the file there could be a racing issue that resulted in the file being larger
than the FileSize passed by the caller. We already have an assertion
for this in MemoryBuffer::init() but have a runtime guarantee that
the buffer will be null-terminated, so do a copy that adds a null-terminator.
Protects against crash of rdar://11161822.
llvm-svn: 154082
LSR can fold three addressing modes into its ICmpZero node:
ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
The first two cases are only used if TLI->isLegalICmpImmediate() likes
the offset.
Make sure the right Offset sign is passed to this method in the second
case. The ARM version is not symmetric.
<rdar://problem/11184260>
llvm-svn: 154079
A MOVCCr instruction can be commuted by inverting the condition. This
can help reduce register pressure and remove unnecessary copies in some
cases.
<rdar://problem/11182914>
llvm-svn: 154033
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
svn r145378 inadvertently changed the destination for the Embedded target
in the makefile. Add a "/Developer" suffix to DSTROOT to compensate.
llvm-svn: 153980
So far all of configure tests have been run against the default SDK and
architecture, regardless of what is actually being built. We've gotten
lucky until now. <rdar://problem/11112479>
llvm-svn: 153972
When folding X == X we need to check getBooleanContents() to determine if the
result is a vector of ones or a vector of negative ones.
I tried creating a test case, but the problem seems to only be exposed on a
much older version of clang (around r144500).
rdar://10923049
llvm-svn: 153966
brace) so that we get more accurate line number information about the
declaration of a given function and the line where the function
first starts.
Part of rdar://11026482
llvm-svn: 153916
This patch allows llvm to recognize that a 64 bit object file is being produced
and that the subsequently generated ELF header has the correct information.
The test case checks for both big and little endian flavors.
Patch by Jack Carter.
llvm-svn: 153889
http://llvm.org/bugs/show_bug.cgi?id=12343
We have not trivial way for splitting edges that are goes from indirect branch. We can do it with some tricks, but it should be additionally discussed. And it is still dangerous due to difficulty of indirect branches controlling.
Fix forbids this case for unswitching.
llvm-svn: 153879
reflected in the LLVM IR (as a declare or something), then treat it like a data
object.
N.B. This isn't 100% correct. The ASM parser should supply more information so
that we know what type of object it is, and what attributes it should have.
llvm-svn: 153870
Do not try to optimize swizzles of shuffles if the source shuffle has more than
a single user, except when the source shuffle is also a swizzle.
llvm-svn: 153864
rather than a bitfield, a great suggestion by Chris during code review.
There is still quite a bit of cruft in the interface, but that requires
sorting out some awkward uses of the cost inside the actual inliner.
No functionality changed intended here.
llvm-svn: 153853
Post-RA scheduling gives a significant performance improvement on
the embedded cores, so turn it on. Using full anti-dep. breaking is
important for FP-intensive blocks, so turn it on (just on the
embedded cores for now; this should also be good on the 970s because
post-ra scheduling is all that we have for now, but that should have
more testing first).
llvm-svn: 153843
This adds a full itinerary for IBM's PPC64 A2 embedded core. These
cores form the basis for the CPUs in the new IBM BG/Q supercomputer.
llvm-svn: 153842
This also avoids emitting the information twice, which led to code bloat. On i386-linux-Release+Asserts
with all targets built this change shaves a whopping 1.3 MB off clang. The number is probably exaggerated
by recent inliner changes but the methods were already enormous with the old inline cost computation.
The DWARF reg -> LLVM reg mapping doesn't seem to have holes in it, so it could be a simple lookup table.
I didn't implement that optimization yet to avoid potentially changing functionality.
There is still some duplication both in tablegen and the generated code that should be cleaned up eventually.
llvm-svn: 153837
As a side note, I really dislike array_pod_sort... Do we really still
care about any STL implementations that get this so wrong? Does libc++?
llvm-svn: 153834
a single missing character. Somehow, this had gone untested. I've added
tests for returns-twice logic specifically with the always-inliner that
would have caught this, and fixed the bug.
Thanks to Matt for the careful review and spotting this!!! =D
llvm-svn: 153832
Loads and stores can have different pipeline behavior, especially on
embedded chips. This change allows those differences to be expressed.
Except for the 440 scheduler, there are no functionality changes.
On the 440, the latency adjustment is only by one cycle, and so this
probably does not affect much. Nevertheless, it will make a larger
difference in the future and this removes a FIXME from the 440 itin.
llvm-svn: 153821
This is the CodeGen equivalent of r153747. I tested that there is not noticeable
performance difference with any combination of -O0/-O2 /-g when compiling
gcc as a single compilation unit.
llvm-svn: 153817
Dynamic linking on PPC64 has had problems since we had to move the top-down
hazard-detection logic post-ra. For dynamic linking to work there needs to be
a nop placed after every call. It turns out that it is really hard to guarantee
that nothing will be placed in between the call (bl) and the nop during post-ra
scheduling. Previous attempts at fixing this by placing logic inside the
hazard detector only partially worked.
This is now fixed in a different way: call+nop codegen-only instructions. As far
as CodeGen is concerned the pair is now a single instruction and cannot be split.
This solution works much better than previous attempts.
The scoreboard hazard detector is also renamed to be more generic, there is currently
no cpu-specific logic in it.
llvm-svn: 153816
the very high overhead of the complex inline cost analysis when all it
wants to do is detect three patterns which must not be inlined. Comment
the code, clean it up, and leave some hints about possible performance
improvements if this ever shows up on a profile.
Moving this off of the (now more expensive) inline cost analysis is
particularly important because we have to run this inliner even at -O0.
llvm-svn: 153814
interfaces. These methods were used in the old inline cost system where
there was a persistent cache that had to be updated, invalidated, and
cleared. We're now doing more direct computations that don't require
this intricate dance. Even if we resume some level of caching, it would
almost certainly have a simpler and more narrow interface than this.
llvm-svn: 153813
on a per-callsite walk of the called function's instructions, in
breadth-first order over the potentially reachable set of basic blocks.
This is a major shift in how inline cost analysis works to improve the
accuracy and rationality of inlining decisions. A brief outline of the
algorithm this moves to:
- Build a simplification mapping based on the callsite arguments to the
function arguments.
- Push the entry block onto a worklist of potentially-live basic blocks.
- Pop the first block off of the *front* of the worklist (for
breadth-first ordering) and walk its instructions using a custom
InstVisitor.
- For each instruction's operands, re-map them based on the
simplification mappings available for the given callsite.
- Compute any simplification possible of the instruction after
re-mapping, and store that back int othe simplification mapping.
- Compute any bonuses, costs, or other impacts of the instruction on the
cost metric.
- When the terminator is reached, replace any conditional value in the
terminator with any simplifications from the mapping we have, and add
any successors which are not proven to be dead from these
simplifications to the worklist.
- Pop the next block off of the front of the worklist, and repeat.
- As soon as the cost of inlining exceeds the threshold for the
callsite, stop analyzing the function in order to bound cost.
The primary goal of this algorithm is to perfectly handle dead code
paths. We do not want any code in trivially dead code paths to impact
inlining decisions. The previous metric was *extremely* flawed here, and
would always subtract the average cost of two successors of
a conditional branch when it was proven to become an unconditional
branch at the callsite. There was no handling of wildly different costs
between the two successors, which would cause inlining when the path
actually taken was too large, and no inlining when the path actually
taken was trivially simple. There was also no handling of the code
*path*, only the immediate successors. These problems vanish completely
now. See the added regression tests for the shiny new features -- we
skip recursive function calls, SROA-killing instructions, and high cost
complex CFG structures when dead at the callsite being analyzed.
Switching to this algorithm required refactoring the inline cost
interface to accept the actual threshold rather than simply returning
a single cost. The resulting interface is pretty bad, and I'm planning
to do lots of interface cleanup after this patch.
Several other refactorings fell out of this, but I've tried to minimize
them for this patch. =/ There is still more cleanup that can be done
here. Please point out anything that you see in review.
I've worked really hard to try to mirror at least the spirit of all of
the previous heuristics in the new model. It's not clear that they are
all correct any more, but I wanted to minimize the change in this single
patch, it's already a bit ridiculous. One heuristic that is *not* yet
mirrored is to allow inlining of functions with a dynamic alloca *if*
the caller has a dynamic alloca. I will add this back, but I think the
most reasonable way requires changes to the inliner itself rather than
just the cost metric, and so I've deferred this for a subsequent patch.
The test case is XFAIL-ed until then.
As mentioned in the review mail, this seems to make Clang run about 1%
to 2% faster in -O0, but makes its binary size grow by just under 4%.
I've looked into the 4% growth, and it can be fixed, but requires
changes to other parts of the inliner.
llvm-svn: 153812
visitor will now visit a CallInst and an InvokeInst with
instruction-specific visitors, then visit a generic CallSite visitor,
then delegate back to the Instruction visitor and the TerminatorInst
visitors depending on whether a call or an invoke originally. This will
be used in the soon-to-land inline cost rewrite.
llvm-svn: 153811