This will simplify the SGPR spilling and also allow us to use
MachineFrameInfo for calculating offsets, which should be more
reliable than our custom code.
This fixes a crash in some cases where a register would be spilled
in a branch such that the VGPR defined for spilling did not dominate
all the uses when restoring.
This fixes a crash in an ocl conformance test. The test requries
register spilling and is too big to include.
llvm-svn: 216217
There is a fundamental difference between how the gold API and lib/LTO view
the LTO process.
The gold API talks about a particular symbol in a particular file. The lib/LTO
API talks about a symbol in the merged module.
The merged module is then defined in terms of the IR semantics. In particular,
a linkonce_odr GV is only copied if it is used, since it is valid to drop
unused linkonce_odr GVs.
In the testcase in pr19901 both properties collide. What happens is that gold
asks us to keep a particular linkonce_odr symbol, but the IR linker doesn't
copy it to the merged module and we never have a chance to ask lib/LTO to keep
it.
This patch fixes it by having a more direct implementation of the gold API. If
it asks us to keep a symbol, we change the linkage so it is not linkonce. If it
says we can drop a symbol, we do so. All of this before we even send the module
to lib/Linker.
Since now we don't have to produce LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN,
during symbol resolution we can use a temporary LLVMContext and do lazy
module loading. This allows us to keep the minimum possible amount of
allocated memory around. This should also allow as much parallelism as
we want, since there is no shared context.
llvm-svn: 216215
Summary:
This is a first small step towards passing generic "Expr" instead of
ArgBeg/ArgEnd pair into EmitCallArgs() family of methods. Having "Expr" will
allow us to get the corresponding FunctionDecl and its ParmVarDecls,
thus allowing us to alter CodeGen depending on the function/parameter
attributes.
No functionality change.
Test Plan: regression test suite
Reviewers: rnk
Reviewed By: rnk
Subscribers: aemerson, cfe-commits
Differential Revision: http://reviews.llvm.org/D4915
llvm-svn: 216214
We discussed the issue of generality vs. readability of the AVX512 classes
recently. I proposed this approach to try to hide and centralize the mappings
we commonly perform based on the vector type. A new class X86VectorVTInfo
captures these.
The idea is to pass an instance of this class to classes/multiclasses instead
of the corresponding ValueType. Then the class/multiclass can use its field
for things that derive from the type rather than passing all those as separate
arguments.
I modified avx512_valign to demonstrate this new approach. As you can see
instead of 7 related template parameters we now have one. The downside is
that we have to refer to fields for the derived values. I named the argument
'_' in order to make this as invisible as possible. Please let me know if you
absolutely hate this. (Also once we allow local initializations in
multiclasses we can recover the original version by assigning the fields to
local variables.)
Another possible use-case for this class is to directly map things, e.g.:
RegisterClass KRC = X86VectorVTInfo<32, i16>.KRC
llvm-svn: 216209
The profile data format was recently updated and the new indexing api
requires the code coverage tool to know the function's hash as well
as the function's name to get the execution counts for a function.
Differential Revision: http://reviews.llvm.org/D4995
llvm-svn: 216208
The profile data format was recently updated and the new indexing api
requires the code coverage tool to know the function's hash as well
as the function's name to get the execution counts for a function.
Differential Revision: http://reviews.llvm.org/D4994
llvm-svn: 216207
The AdvSIMD pass may produce copies that are not coalescer-friendly. The
peephole optimizer knows how to fix that as demonstrated in the test case.
<rdar://problem/12702965>
llvm-svn: 216200
The purely imperative format of the configuration performed in lit.cfg
was making merge conflicts with changes I have for Android an
unbelievable pain in the ass. I've moved all of the configuration into a
Configuration class, with each piece of configuration happening in a
different method. This way I can avoid merge conflicts, and any new
features that get added (as have been done with the sanitizers, the -std
flag, etc.) can be easily applied to Android as well.
Reviewers: mclow.lists, EricWF
Reviewed By: EricWF
Differential Revision: http://reviews.llvm.org/D4952
llvm-svn: 216196
This continues the effort to get Host code moved over to HostInfo,
and removes many more instances of preprocessor defines along the
way.
llvm-svn: 216195
See this email thread:
http://lists.cs.uiuc.edu/pipermail/lldb-commits/Week-of-Mon-20140818/012487.html
This patch handles the case where the inferior process exits but leaves the ReadThread in a continuous loop reading from the communication pipe. On MacOSX, the ReadThread exits when it receives a 0 return value from the read due to EOF. On Linux the read returns -1 and sets errno to EIO error, this does not currently cause the thread to shutdown so it continues to read from the comm. In Communication::ReadThread I added a handler for eConnectionStatusError to disconnect and shutdown the thread.
Change by Alex Pepper.
llvm-svn: 216194
There are two add-immediate instructions in Thumb1: tADDi8 and tADDi3. Only
the latter supports using different source and destination registers, so
whenever we materialize a new base register (at a certain offset) we'd do
so by moving the base register value to the new register and then adding in
place. This patch changes the code to use a single tADDi3 if the offset is
small enough to fit in 3 bits.
Differential Revision: http://reviews.llvm.org/D5006
llvm-svn: 216193
In both Clang and LLVM, this is a common pattern:
Size = sizeof(DeclRefExpr) + SomeExtraStuff;
void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
return new (Mem) DeclRefExpr(...);
The annoying thing is that because the default placement-new operator has a
nothrow specification, the compiler will insert a null check of Mem before
calling the DeclRefExpr constructor. This null check is redundant for us,
because we expect the allocation functions to never return null.
By annotating the allocator functions with returns_nonnull, we can optimize
away these checks. Compiling clang with a recent version of Clang and measuring
with:
$ perf stat -r20 bin/clang.patch -fsyntax-only -w gcc.c && perf stat -r20 bin/clang.orig -fsyntax-only -w gcc.c
Shows a 2.4% speed-up (+- 0.8%).
The pattern occurs in LLVM too. Measuring with -O3 (and now using bzip2.c
instead, because it's smaller):
$ perf stat -r20 bin/clang.patch -O3 -w bzip2.c && perf stat -r20 bin/clang.orig -O3 -w bzip2.c
Shows 4.4 % speed-up (+- 1%).
If anyone knows of a similar attribute we can use for MSVC, or some other
technique to get rid off the null check there, please let me know.
Differential Revision: http://reviews.llvm.org/D4989
llvm-svn: 216192
At least check-asan works with this change.
If the change breaks anything, we'll need to add:
a) a comment describing why we have to use INTERCEPT_FUNCTION rather than
ASAN_INTERCEPT_FUNC
and
b) a test case.
llvm-svn: 216177
Summary:
This bug was introduced in r213006 which makes an assumption that MCSection is COFF for Windows MSVC. This assumption is broken for MCJIT users where ELF is used instead [1]. The fix is to change the MCSection cast to a dyn_cast.
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-December/068407.html.
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4872
llvm-svn: 216173
The FPv4-SP floating-point unit is generally referred to as
single-precision only, but it does have double-precision registers and
load, store and GPR<->DPR move instructions which operate on them.
This patch enables the use of these registers, the main advantage of
which is that we now comply with the AAPCS-VFP calling convention.
This partially reverts r209650, which added some AAPCS-VFP support,
but did not handle return values or alignment of double arguments in
registers.
This patch also adds tests for Thumb2 code generation for
floating-point instructions and intrinsics, which previously only
existed for ARM.
llvm-svn: 216172
This does not require -ffast-math, and it gives CSE/GVN more options to
eliminate duplicate expressions in, e.g.:
return ((x + 0.1234 * y) * (x - 0.1234 * y));
Differential Revision: http://reviews.llvm.org/D4904
llvm-svn: 216169
When generating records/unions, the same enum type may be generated more
than once (with different names). In these cases, the name of the enum
values are not sufficiently unique to prevent multiple declarations. E.g:
typedef enum T3 { enum0val0 } T3;
typedef T3 T2[3];
typedef enum T4 { enum0val0 } T4;
typedef union T1 { T2 field0; T4 field1; char field2; } T1;
Added a unique suffix to enum values so that multiple identical enum types do
not use the same enum value names.
One example of this bug is produced by:
ABITestGen.py --no-unsigned --no-vector --no-complex --no-bool \
--max-args 0 --max-record-depth 1 -o inputs/test.9921.a.c \
-T inputs/test.9921.b.c -D inputs/test.9921.driver.c \
--min=9921 --count=1
llvm-svn: 216166