Summary:
Currently Shrinkwrap is not enabled on AIX.
This patch enables shrink wrap on 32 and 64 bit AIX, and 64 bit ELF.
Reviewed By: sfertile, nemanjai
Differential Revision: https://reviews.llvm.org/D95094
Some URI scheme needs the hint path to do a correct resolution, we pass
one of the open files as hint path.
This is not perfect, and it might not work for opening files across
project, but it would fix a bug with our internal scheme.
in the long run, removing URIs from all the index internals is a more proper fix.
Differential Revision: https://reviews.llvm.org/D96844
Do not defer to the base class when the register constraint is a
physical fpr. The base class will select SPILLTOVSRRC as the register
class and register allocation will fail on subtargets without VSX
registers.
Differential Revision: https://reviews.llvm.org/D91629
Add enum and typedef argument support to `-fdeclare-opencl-builtins`,
which was the last major missing feature.
Adding the remaining missing builtins is left as future work.
Differential Revision: https://reviews.llvm.org/D96051
* Update skip-if-dead.ll with tests for wave32.
* Fix the crash in verifier in one newly enabled test by adding
missing fixImplicitOperands in branch insertion code.
```
*** Bad machine code: Using an undefined physical register ***
- function: test_kill_divergent_loop
- basic block: %bb.2 bb (0xad96308)
- instruction: S_CBRANCH_VCCNZ %bb.1, implicit $vcc_lo
- operand 1: implicit $vcc_lo
LLVM ERROR: Found 1 machine code errors.
```
* Simplify "cbranch_kill" to not use interp instructions.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D96793
The PrepareForLTO stage of LoopRotate tries to avoid unrolling loops
with calls that might be inlined later. See D94232 where this was
introduced.
We didn't catch all occurances of the LoopRotatePass in the New Pass
Manager, so the original regression in astar returned with the pass
manager switch.
This patch documents command line parsing in `-cc1`, `CompilerInvocation` and the marshalling infrastructure for command line options.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D95790
Otherwise they are not allocated as a single bit field and take 4
bytes instead of 2.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D95954
Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Fixes issue raised by @saugustine in rG5aa8f4c0843a where we were failing to replace null shuffle operands from MergeInnerShuffle to UNDEFs.
Differential Revision: https://reviews.llvm.org/D96345
With enough cores, the slowest tests can significantly change the total testing time if they happen to run late. With this change, a test suite can improve performance (for high-end systems) by listing just a few of the slowest tests up front.
Reviewed By: jdenny, jhenderson
Differential Revision: https://reviews.llvm.org/D96594
The helper function isBoolSGPR is too aggressive when determining
when a v_cndmask can be skipped on a boolean value because the
function does not check the operands of and/or/xor.
This can be problematic for the Add/Sub combines that can leave
bits set even for inactive lanes leading to wrong results.
Fix this by inspecting the operands of and/or/xor recursively.
Differential Revision: https://reviews.llvm.org/D86878
This patch adds support for fixed-length vector vselect. It does so by
lowering them to a custom unmasked VSELECT_VL node with a vector length
operand.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D96768
Some test systems do not use lit for test discovery but only for its
substitution and test selection because they use another way of managing
test collections, e.g. CTest. This forces those tests to be invoked with
lit --no-indirectly-run-check. When a mix of lit version is in use, it
requires to detect the availability of that option.
This commit provides a new config option standalone_tests to signal a
directory made of tests meant to run as standalone. When this option is
set, lit skips test discovery and the indirectly run check. It also adds
the missing documentation for --no-indirectly-run-check.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94766
This fixes the weak_hooks.cpp test on FreeBSD. Since this feature appears
to be supported on almost all platforms, it might also make sense to turn
it into an opt-out list instead of being opt-in.
Reviewed By: krytarowski
Differential Revision: https://reviews.llvm.org/D96255
Because it no longer relies on finding implicit casts, this check now
works on templates which are not instantiated in the translation unit.
Differential Revision: https://reviews.llvm.org/D96138
The option was added in D90507 for C/C++ source files. This patch adds
support for assembly files.
Differential Revision: https://reviews.llvm.org/D96783
This allows the option to affect the LTO output. Module::Max helps to
generate debug info for all modules in the same format.
Differential Revision: https://reviews.llvm.org/D96597
The redundancy around work-done-progress is annoying but ok for now.
There's a weirdness with context lifetimes around outgoing method calls, which
I've preserved to keep this NFC. We should probably fix it though.
Differential Revision: https://reviews.llvm.org/D96717
This is a follow up D96600 and cleans up most calls to
getPreferredAddresingMode. I.e., we really don't need to query the same things
again and again, but get the preferred addressing mode once for each loop. So
this should be a lot friendlier for compile times, especially if we start
implementing getPreferredAddresingMode.
Differential Revision: https://reviews.llvm.org/D96772
We can't construct a working unique_function from an object that's not callable
with the right types, so don't allow deduction to succeed.
This avoids some ambiguous conversion cases, e.g. allowing to overload
on different unique_function types, and to conversion operators to
unique_function.
std::function and the any_invocable proposal have these.
This was added to llvm::function_ref in D88901 and followups
Differential Revision: https://reviews.llvm.org/D96794
This change affects 'SemaOpenCLCXX/newdelete.cl' test,
thus the patch contains adjustments in types validation of
operators new and delete
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D96178
To make sure compile-times don't regress, add an option to restrict the number
of instructions considered for sinking as alias analysis can be expensive and
for the same reason also skip large blocks.
Differential Revision: https://reviews.llvm.org/D96485
When compiling with ccache, compiler commands get split into smaller steps
and clang's default -Wunused-command-line-argument complains about unused
include directory arguments. In combination -Werror, compilation aborts.
This patch passes the CMAKE_C_FLAGS into the build script. Configuring with
-DCMAKE_C_FLAGS=-Wno-unused-command-line-argument allows successful testing.
Differential Revision: https://reviews.llvm.org/D96762
Displaying the problem range could crash if the begin and end of a
range is in different files or macros. After the change such range
is displayed only as the beginning location.
There is a bug for this problem:
https://bugs.llvm.org/show_bug.cgi?id=46540
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D95860
This adds highlighting for MIR instruction opcodes, physical registers,
and MIR types.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D95553
This initial definition handles the yaml container and the embedding of
the inner IRs. As a stopgap, this reuses the LLVM IR syntax highlighting
for the MIR function bodies--even though it's not technically correct,
it produces decent highlighting for a first pass.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D95552
If an app mmaps lots of memory, a user mmap may end up
in the tsan region for traces. Shadow for this range
overlaps with shadow for other user regions.
This causes havok: from false positives to crashes.
Don't leave unmapped holes in the traces region.
Reviewed-in: https://reviews.llvm.org/D96697
This patch proposes how to deal with RISC-V vector frame objects. The
layout of RISC-V vector frame will look like
|---------------------------------|
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| scalar outgoing arguments |
|---------------------------------|
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------| <- end of frame (sp)
If there is realignment or variable length array in the stack, we will use
frame pointer to access fixed objects and stack pointer to access
non-fixed objects.
|---------------------------------| <- frame pointer (fp)
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| ///// realignment ///// |
|---------------------------------|
| scalar outgoing arguments |
|---------------------------------|
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------| <- end of frame (sp)
If there are both realignment and variable length array in the stack, we
will use frame pointer to access fixed objects and base pointer to access
non-fixed objects.
|---------------------------------| <- frame pointer (fp)
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| ///// realignment ///// |
|---------------------------------| <- base pointer (bp)
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------|
| /////////////////////////////// |
| variable length array |
| /////////////////////////////// |
|---------------------------------| <- end of frame (sp)
| scalar outgoing arguments |
|---------------------------------|
In this version, we do not save the addresses of RVV objects in the
stack. We access them directly through the polynomial expression
(a x VLENB + b). We do not reserve frame pointer when there is any RVV
object in the stack. So, we also access the scalar frame objects through the
polynomial expression (a x VLENB + b) if the access across RVV stack
area.
Differential Revision: https://reviews.llvm.org/D94465