Commit Graph

4 Commits

Author SHA1 Message Date
Hal Finkel 940ab934d4 Add CR-bit tracking to the PowerPC backend for i1 values
This change enables tracking i1 values in the PowerPC backend using the
condition register bits. These bits can be treated on PowerPC as separate
registers; individual bit operations (and, or, xor, etc.) are supported.
Tracking booleans in CR bits has several advantages:

 - Reduction in register pressure (because we no longer need GPRs to store
   boolean values).

 - Logical operations on booleans can be handled more efficiently; we used to
   have to move all results from comparisons into GPRs, perform promoted
   logical operations in GPRs, and then move the result back into condition
   register bits to be used by conditional branches. This can be very
   inefficient, because the throughput of these CR <-> GPR moves have high
   latency and low throughput (especially when other associated instructions
   are accounted for).

 - On the POWER7 and similar cores, we can increase total throughput by using
   the CR bits. CR bit operations have a dedicated functional unit.

Most of this is more-or-less mechanical: Adjustments were needed in the
calling-convention code, support was added for spilling/restoring individual
condition-register bits, and conditional branch instruction definitions taking
specific CR bits were added (plus patterns and code for generating bit-level
operations).

This is enabled by default when running at -O2 and higher. For -O0 and -O1,
where the ability to debug is more important, this feature is disabled by
default. Individual CR bits do not have assigned DWARF register numbers,
and storing values in CR bits makes them invisible to the debugger.

It is critical, however, that we don't move i1 values that have been promoted
to larger values (such as those passed as function arguments) into bit
registers only to quickly turn around and move the values back into GPRs (such
as happens when values are returned by functions). A pair of target-specific
DAG combines are added to remove the trunc/extends in:
  trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
and:
  zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
In short, we only want to use CR bits where some of the i1 values come from
comparisons or are used by conditional branches or selects. To put it another
way, if we can do the entire i1 computation in GPRs, then we probably should
(on the POWER7, the GPR-operation throughput is higher, and for all cores, the
CR <-> GPR moves are expensive).

POWER7 test-suite performance results (from 10 runs in each configuration):

SingleSource/Benchmarks/Misc/mandel-2: 35% speedup
MultiSource/Benchmarks/Prolangs-C++/city/city: 21% speedup
MultiSource/Benchmarks/MiBench/automotive-susan: 23% speedup
SingleSource/Benchmarks/CoyoteBench/huffbench: 13% speedup
SingleSource/Benchmarks/Misc-C++/Large/sphereflake: 13% speedup
SingleSource/Benchmarks/Misc-C++/mandel-text: 10% speedup

SingleSource/Benchmarks/Misc-C++-EH/spirit: 10% slowdown
MultiSource/Applications/lemon/lemon: 8% slowdown

llvm-svn: 202451
2014-02-28 00:27:01 +00:00
Manman Ren a2e9a98b06 TBAA: remove !tbaa from testing cases when they are not needed.
This will make it easier to turn on struct-path aware TBAA since the metadata
format will change.

llvm-svn: 188944
2013-08-21 22:20:53 +00:00
Hal Finkel 95081bff72 Manually remove successors in if conversion when CopyAndPredicateBlock is used
In the simple and triangle if-conversion cases, when CopyAndPredicateBlock is
used because the to-be-predicated block has other predecessors, we need to
explicitly remove the old copied block from the successors list. Normally if
conversion relies on TII->AnalyzeBranch combined with BB->CorrectExtraCFGEdges
to cleanup the successors list, but if the predicated block contained an
un-analyzable branch (such as a now-predicated return), then this will fail.

These extra successors were causing a problem on PPC because it was causing
later passes (such as PPCEarlyReturm) to leave dead return-only basic blocks in
the code.

llvm-svn: 179227
2013-04-10 22:05:25 +00:00
Hal Finkel 5711eca19c Allow PPC B and BLR to be if-converted into some predicated forms
This enables us to form predicated branches (which are the same conditional
branches we had before) and also a larger set of predicated returns (including
instructions like bdnzlr which is a conditional return and loop-counter
decrement all in one).

At the moment, if conversion does not capture all possible opportunities. A
simple example is provided in early-ret2.ll, where if conversion forms one
predicated return, and then the PPCEarlyReturn pass picks up the other one. So,
at least for now, we'll keep both mechanisms.

llvm-svn: 179134
2013-04-09 22:58:37 +00:00