Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Extending ValueObjectDynamicValue so that it stores a TypeAndOrName instead of a TypeSP.
This change allows us to reflect the notion that a ValueObject can have a dynamic type for which we have no debug information.
Previously, we would coalesce that to the static type of the object, potentially losing relevant information or even getting it wrong.
This fix ensures we can correctly report the class name for Cocoa objects whose types are hidden classes that we know nothing about (e.g. __NSArrayI for immutable arrays).
As a side effect, our --show-types argument to frame variable no longer needs to append custom dynamic type information.
llvm-svn: 173216
Enabling support for the wchar_t type.
Without the proper language option setup, clang's ASTContexts will be configured to have wchar_t == int
This patch enables the correct options to make sure that we report wchar_t as itself
Added a test case to make sure we do not regress
Adding files missing from the previous commit
llvm-svn: 172039
Setting breakpoints using "breakpoint set --selector <SEL>" previously didn't when there was no dSYM file.
Also fixed issues in the test suite that arose after fixing the bug.
Also fixed the log channels to properly ref count the log streams using weak pointers to the streams. This fixes a test suite problem that would happen when you specified a full path to the compiler with the "--compiler" option.
llvm-svn: 171816
Added SBTarget::EvaluateExpression() so expressions can be evaluated without needing a process.
Also fixed many functions that deal with clang AST types to be able to properly handle the clang::Type::Elaborated types ("struct foo", "class bar").
llvm-svn: 171476
The results from Clang name lookups changed to
be ArrayRefs, so I had to change the way we
check for the presence of a result and the way
we iterate across results.
llvm-svn: 170927
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
Simplify the logging on ObjectFile::~ObjectFile() to not access an classes above the object file (like the module) so we don't crash when logging object lifetimes. The log message contains the "this" pointer value which can be matched up with the constructor log.
llvm-svn: 168754
Allow the expression parser to see more than just data symbols. We now accept any symbol that has an address. We take precautions to only accept symbols by their mangled or demangled names only if the demangled name was not synthesized. If the demangled name is synthesized, then we now mark symbols accordingly and only compare against the mangled original name.
llvm-svn: 168668
Unnamed bitfields cause struct layout problems
Synthesize unnamed bitfields when required. Most compilers don't mention unnamed bitfields in the DWARF, so we need to create them to keep clang happy with the types we create from the DWARF. We currently can't do this for ObjC since the DW_AT_bit_offset value for any direct ivars of ObjC classes as the values for these attributes are bogus. A bug has been filed on Clang to fix this, and another bug has been filed on LLDB to make sure we fix the DWARF parser once the clang fix is in by looking the the DW_AT_producer in the compile unit attributes and finding the compiler version and only enabling it for newer versions of clang.
llvm-svn: 167424
LLDB now provides base class offsets (virtual and non virtual) to Clang's record layout. We previously were told this wasn't necessary, but it is when pragma pack gets involved.
llvm-svn: 167262
so it could hold this information, and then used it to look up unfound names in the object pointer
if it exists. This gets "frame var" to work for unqualified references to ivars captured in blocks.
But the expression parser is ignoring this information still.
llvm-svn: 166860
Full UnwindPlan is trying to do an impossible unwind; in that case
invalidate the Full UnwindPlan and replace it with the architecture
default unwind plan.
This is a scenario that happens occasionally with arm unwinds in
particular; the instruction analysis based full unwindplan can
mis-parse the functions and the stack walk stops prematurely. Now
we can do a simpleminded frame-chain walk to find the caller frame
and continue the unwind. It's not ideal but given the complicated
nature of analyzing the arm functions, and the lack of eh_frame
information on iOS, it is a distinct improvement and fixes some
long-standing problems with the unwinder on that platform.
This is fixing <rdar://problem/12091421>. I may re-use this
invalidate feature in the future if I can identify other cases where
the full unwindplan's unwind information is clearly incorrect.
This checkin also includes some cleanup for the volatile register
definition in the arm ABI plugin for <rdar://problem/10652166>
although work remains to be done for that bug.
llvm-svn: 166757
Allow type searches to specify a type keyword when searching for type. Currently supported type keywords are: struct, class, union, enum, and typedef.
So now you can search for types with a string like "struct foo".
llvm-svn: 166420
top-of-tree. Removed all local patches and llvm.zip.
The intent is that fron now on top-of-tree will
always build against LLVM/Clang top-of-tree, and
that problems building will be resolved as they
occur. Stable release branches of LLDB can be
constructed as needed and linked to specific release
branches of LLVM/Clang.
llvm-svn: 164563
not correctly store the contents of Objective-C
classes. This was due to a combination of
factors:
1) Types were only being completed if we were
looking inside them for specific ivars
(using FindExternalVisibleDeclsByName).
We now look the complete type up at every
FindExternalLexicalDecls.
2) Even if the types were completed properly,
ValueObjectConstResult overrode the type
of every ValueObject using the complete type
for its class from the debug information.
Superclasses of complete classes are not
guaranteed to be complete. Although "frame
variable" uses the debug information,
the expression parser does now piece together
complete types at every level (as described
in Bullet 1), so I provided a way for the
expression parser to prevent overriding.
3) Type sizes were being miscomputed by
ClangASTContext. It ignored the ISA pointer
and only counted fields. We now correctly
count the ISA in the size of an object.
<rdar://problem/12315386>
llvm-svn: 164333
it is unconditionally present now.
ObjectContainerBSDArchive::CreateInstance %z8.8x is not a valid printf arg specifier, %8.8zx would work
for size_t arg but this arg is addr_t. use %8.8llx and cast up to uint64_t.
ObjectFile::FindPlugin ditto.
DynamicRegisterInfo::SetRegisterInfo ifdef this function out if LLDB_DISABLE_PYTHON.
llvm-svn: 163599
Added a fix for incorrect dynamic typing. Before when asking if a C++ class could be dynamic, we would answer yes for incomplete C++ classes. This turned out to have issues where if a class was not virtual, yet had its first ivar be an instance of a virtual class, we would incorrectly say that a class was virtual and we would downcast it to be a pointer to the first ivar. We now ask the class to complete itself prior to answering the question. We need to test the effects on memory of this change prior to submission. It is the safest and best fix, but it does have a potential downside of higher memory consumption.
llvm-svn: 163014
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
when you want to find the caller's saved pc, you look up the return address
register and use that. On arm, for instance, this would be the contents of
the link register (lr).
If the eh_frame CIE defines an RA, record that fact in the UnwindPlan.
When we're finding a saved register, if it's the pc, lok for the location
of the return address register instead.
<rdar://problem/12062310>
llvm-svn: 162167
Added new API to lldb::SBTypeMember for bitfields:
bool SBTypeMember::IsBitfield();
uint32_t SBTypeMember::GetBitfieldSizeInBits();
Also added new properties for easy access. Now SBTypeMember objects in python have a "fields" property for all type fields, "bases" for all direct bases, "vbases" for all virtual base classes and "members" for a combo of all three organized by bit offset. They all return a python list() of SBTypeMember objects. Usage:
(lldb) script
>>> t = lldb.target.FindFirstType("my_type")
>>> for field in t.fields:
... print field
>>> for vbase in t.vbases:
... print vbase
>>> for base in t.bases:
... print base
>>> for member in t.members:
... print member
Also added new "is_bitfield" property to the SBTypeMember objects that will return the result of SBTypeMember::IsBitfield(), and "bitfield_bit_size" which will return the result of SBTypeMember::GetBitfieldSizeInBits();
I also fixed "SBTypeMember::GetOffsetInBytes()" to return the correct byte offset.
llvm-svn: 161091
instructions, be sure to allocate new UnwindPlan::Row's each
time we push a row on to the UnwindPlan so we don't mutate
it any further.
(fallout from changing the UnwindPlan from having a vector
of Row's to having a vector of RowSP shared pointers.)
<rdar://problem/11997385>
llvm-svn: 161089
the state of the unwind instructions once the prologue has finished. If it hits an
early return epilogue in the middle of the function, re-instate the prologue after that
epilogue has completed so that we can still unwind for cases where the flow of control
goes past that early-return. <rdar://problem/11775059>
Move the UnwindPlan operator== definition into the .cpp file, expand the definition a bit.
Add some casts to a SBCommandInterpreter::HandleCompletion() log statement so it builds without
warning on 64- and 32-bit systems.
llvm-svn: 160337
a shared pointer to ease some memory management issues with a patch
I'm working on.
The main complication with using SPs for these objects is that most
methods that build up an UnwindPlan will construct a Row to a given
instruction point in a function, then add additional regsaves in
the next instruction point to that row and push it again. A little
care is needed to not mutate the previous instruction point's Row
once these are switched to being held behing shared pointers.
llvm-svn: 160214
UnwindPlans for a function. This specifically does not use any
previously-generated UnwindPlans so if any logging is performed
while creating the UnwindPlans, it will be repeated. This is
useful for when an lldb stack trace is not correct and you want
to gather diagnostic information from the user -- they can do
log enable -v lldb unwind, image show-unwind of the function, and
you'll get the full logging as the UnwindPlans are recreated.
llvm-svn: 160095
various other syntactic sugar work. Lambdas do
not due to some problems relocating code containing
lambdas. Rvalue references work when returned from
expressions, but need more testing.
llvm-svn: 156948
Add "--name" option to "image lookup" that will search both functions and symbols.
Also made all of the output from any of the "image lookup" commands be the same regardless of the lookup type (function name, symbol name, func or symbol, file and line, address, etc). The --verbose or -v option also will expand the results as needed and display things so they look the same.
llvm-svn: 156835
Fixed the DisassemblerLLVMC disassembler to parse more efficiently instead of parsing opcodes over and over. The InstructionLLVMC class now only reads the opcode in the InstructionLLVMC::Decode function. This can be done very efficiently for ARM and architectures that have fixed opcode sizes. For x64 it still calls the disassembler to get the byte size.
Moved the lldb_private::Instruction::Dump(...) function up into the lldb_private::Instruction class and it now uses the function that gets the mnemonic, operandes and comments so that all disassembly is using the same code.
Added StreamString::FillLastLineToColumn() to allow filling a line up to a column with a character (which is used by the lldb_private::Instruction::Dump(...) function).
Modified the Opcode::GetData() fucntion to "do the right thing" for thumb instructions.
llvm-svn: 156532
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
<rdar://problem/11285931>
Use the DWARRF end prologue markers when trying to skip prologue instructions instead of blindly using the second line table address entry.
llvm-svn: 155600
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067
Fixed an issue where there were more than one way to get a CompileUnitSP created when using SymbolFileDWARF with SymbolFileDWARFDebugMap. This led to an assertion that would fire under certain conditions. Now there is only one way to create the compile unit and it will "do the right thing".
llvm-svn: 153908
Fixed an issue that could cause circular type parsing that will assert and kill LLDB.
Prior to this fix the DWARF parser would always create class types and not start their definitions (for both C++ and ObjC classes) until we were asked to complete the class later. When we had cases like:
class A
{
class B
{
};
};
We would alway try to complete A before specifying "A" as the decl context for B. Turns out we can just start the definition and still not complete the class since we can check the TagDecl::isCompleteDefinition() function. This only works for C++ types. This means we will not be pulling in the full definition of parent classes all the time and should help with our memory consumption and also reduce the amount of debug info we have to parse.
I also reduced redundant code that was checking in a lldb::clang_type_t was a possible C++ dynamic type since it was still completing the type, just to see if it was dynamic. This was fixed in another function that was checking for a type being dynamic as an ObjC or a C++ type, but there was dedicated fucntion for C++ that we missed.
llvm-svn: 153713
Line tables when using DWARF in .o files can be wrong when two entries get moved around by the compiler. This was due to incorrect logic in the line entry comparison operator.
llvm-svn: 153685
for unbacked properties. We support two variants:
one in which the getter/setter are provided by
selector ("mySetter:") and one in which the
getter/setter are provided by signature
("-[MyClass mySetter:]").
llvm-svn: 153675
1 - sections only get a valid VM size if they have SHF_ALLOC in the section flags
2 - symbol names are marked as mangled if they start with "_Z"
Also fixed the DWARF parser to correctly use the section file size when extracting the DWARF.
llvm-svn: 153496
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Adding a test case that checks that we do not complete types before due time. This should help us track cases similar to the cascading data formatters.
llvm-svn: 153363
Fixed a performance regression when dynamic types are enable where we would ask a C++ type if it can possibly be dynamic. Previously we would force the type to complete itself and then anwwer the question definitively. Now we ask the type if it is already complete and only definitively answer the question for completed types and just say "yes" for non-complete C++ types. We also always now answer yes for Objective C classes and do not complete those types either.
llvm-svn: 153284
LLDB can match incorrect line table entries when an address is between two valid line entries (in the gap between the valid debug info), now it doesn't!
llvm-svn: 153077
Simplify the locking strategy for Module and its owned objects to always use the Module's mutex to avoid A/B deadlocks. We had a case where a symbol vendor was locking itself and then calling a function that would try to get it's Module's mutex and at the same time another thread had the Module mutex that was trying to get the SymbolVendor mutex. Now any classes that inherit from ModuleChild should use the module lock using code like:
void
ModuleChildSubclass::Function
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
... do work here...
}
}
This will help avoid deadlocks by using as few locks as possible for a module and all its child objects and also enforce detecting if a module has gone away (the ModuleSP will be returned empty if the weak_ptr does refer to a valid object anymore).
llvm-svn: 152679
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
expression command doesn't handle xmm or stmm registers...
o Update ClangASTContext::GetBuiltinTypeForEncodingAndBitSize() to now handle eEncodingVector.
o Modify RegisterValue::SetFromMemoryData() to fix the subtle error due to unitialized variables.
o Add a test file for "expr $xmm0".
llvm-svn: 152190
This was done in SBTarget:
lldb::SBInstructionList
lldb::SBTarget::ReadInstructions (lldb::SBAddress base_addr, uint32_t count);
Also cleaned up a few files in the LLDB.framework settings.
llvm-svn: 152152
so that the expression parser can look up members
of anonymous structs correctly. This meant creating
all the proper IndirectFieldDecls in each Record
after it has been completely populated with members.
llvm-svn: 151868
allocations by section. We install these sections
in the target process and inform the JIT of their
new locations.
Also removed some unused variable warnings.
llvm-svn: 151789
more of the local path, platform path, associated symbol file, UUID, arch,
object name and object offset. This allows many of the calls that were
GetSharedModule to reduce the number of arguments that were used in a call
to these functions. It also allows a module to be created with a ModuleSpec
which allows many things to be specified prior to any accessors being called
on the Module class itself.
I was running into problems when adding support for "target symbol add"
where you can specify a stand alone debug info file after debugging has started
where I needed to specify the associated symbol file path and if I waited until
after construction, the wrong symbol file had already been located. By using
the ModuleSpec it allows us to construct a module with as little or as much
information as needed and not have to change the parameter list.
llvm-svn: 151476
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
indicate whether inline functions are desired.
This allows the expression parser, for instance,
to filter out inlined functions when looking for
functions it can call.
llvm-svn: 150279
user space programs. The core file support is implemented by making a process
plug-in that will dress up the threads and stack frames by using the core file
memory.
Added many default implementations for the lldb_private::Process functions so
that plug-ins like the ProcessMachCore don't need to override many many
functions only to have to return an error.
Added new virtual functions to the ObjectFile class for extracting the frozen
thread states that might be stored in object files. The default implementations
return no thread information, but any platforms that support core files that
contain frozen thread states (like mach-o) can make a module using the core
file and then extract the information. The object files can enumerate the
threads and also provide the register state for each thread. Since each object
file knows how the thread registers are stored, they are responsible for
creating a suitable register context that can be used by the core file threads.
Changed the process CreateInstace callbacks to return a shared pointer and
to also take an "const FileSpec *core_file" parameter to allow for core file
support. This will also allow for lldb_private::Process subclasses to be made
that could load crash logs. This should be possible on darwin where the crash
logs contain all of the stack frames for all of the threads, yet the crash
logs only contain the registers for the crashed thrad. It should also allow
some variables to be viewed for the thread that crashed.
llvm-svn: 150154
working, but not functions). I need to check on a few things to make sure
I am registering everything correctly in the right order and in the right
contexts.
llvm-svn: 149858
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853
Fixed "target modules list" (aliased to "image list") to output more information
by default. Modified the "target modules list" to have a few new options:
"--header" or "-h" => show the image header address
"--offset" or "-o" => show the image header address offset from the address in the file (the slide applied to the shared library)
Removed the "--symfile-basename" or "-S" option, and repurposed it to
"--symfile-unique" "-S" which will show the symbol file if it differs from
the executable file.
ObjectFile's can now be loaded from memory for cases where we don't have the
files cached locally in an SDK or net mounted root. ObjectFileMachO can now
read mach files from memory.
Moved the section data reading code into the ObjectFile so that the object
file can get the section data from Process memory if the file is only in
memory.
lldb_private::Module can now load its object file in a target with a rigid
slide (very common operation for most dynamic linkers) by using:
bool
Module::SetLoadAddress (Target &target, lldb::addr_t offset, bool &changed)
lldb::SBModule() now has a new constructor in the public interface:
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr);
This will find an appropriate ObjectFile plug-in to load an image from memory
where the object file header is at "header_addr".
llvm-svn: 149804
LLVM/Clang. This brings in several fixes, including:
- Improvements in the Just-In-Time compiler's
allocation of memory: the JIT now allocates
memory in chunks of sections, improving its
ability to generate relocations. I have
revamped the RecordingMemoryManager to reflect
these changes, as well as to get the memory
allocation and data copying out fo the
ClangExpressionParser code. Jim Grosbach wrote
the updates to the JIT on the LLVM side.
- A new ExternalASTSource interface to allow LLDB to
report accurate structure layout information to
Clang. Previously we could only report the sizes
of fields, not their offsets. This meant that if
data structures included field alignment
directives, we could not communicate the necessary
alignment to Clang and accesses to the data would
fail. Now we can (and I have update the relevant
test case). Thanks to Doug Gregor for implementing
the Clang side of this fix.
- The way Objective-C interfaces are completed by
Clang has been made consistent with RecordDecls;
with help from Doug Gregor and Greg Clayton I have
ensured that this still works.
- I have eliminated all local LLVM and Clang patches,
committing the ones that are still relevant to LLVM
and Clang as needed.
I have tested the changes extensively locally, but
please let me know if they cause any trouble for you.
llvm-svn: 149775
instead of the __repr__. __repr__ is a function that should return an
expression that can be used to recreate an python object and we were using
it to just return a human readable string.
Fixed a crasher when using the new implementation of SBValue::Cast(SBType).
Thread hardened lldb::SBValue and lldb::SBWatchpoint and did other general
improvements to the API.
Fixed a crasher in lldb::SBValue::GetChildMemberWithName() where we didn't
correctly handle not having a target.
llvm-svn: 149743
uint32_t
SBType::GetNumberOfTemplateArguments ();
lldb::SBType
SBType::GetTemplateArgumentType (uint32_t idx);
lldb::TemplateArgumentKind
SBType::GetTemplateArgumentKind (uint32_t idx);
Some lldb::TemplateArgumentKind values don't have a corresponding SBType
that will be returned from SBType::GetTemplateArgumentType(). This will
help our data formatters do their job by being able to find out the
type of template params and do smart things with those.
llvm-svn: 149658
You can now access a frame in a thread using:
lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread
Where "int" is an integer index. You can also access a list object with all of
the frames using:
lldb.SBThread.frames => list() of lldb.SBFrame objects
All SB objects that give out SBAddress objects have properties named "addr"
lldb.SBInstructionList now has the following convenience accessors for len() and
instruction access using an index:
insts = lldb.frame.function.instructions
for idx in range(len(insts)):
print insts[idx]
Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key:
pc_inst = lldb.frame.function.instructions[lldb.frame.addr]
lldb.SBProcess now exposes:
lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive
lldb.SBProcess.is_running => BOOL check if a process is running (or stepping):
lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed:
lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index
lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process
SBInstruction now exposes:
lldb.SBInstruction.mnemonic => python string for instruction mnemonic
lldb.SBInstruction.operands => python string for instruction operands
lldb.SBInstruction.command => python string for instruction comment
SBModule now exposes:
lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module
lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index
lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str"
lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex
lldb.SBModule.symbols => list() of all symbols in a module
SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr"
property. The current "lldb.target" will be used to try and resolve the load address.
Load addresses can also be set using this accessor:
addr = lldb.SBAddress()
addd.load_addr = 0x123023
Then you can check the section and offset to see if the address got resolved.
SBTarget now exposes:
lldb.SBTarget.module[int] => lldb.SBModule from zero based module index
lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string
lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches
lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex
lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target
SBSymbol now exposes:
lldb.SBSymbol.name => python string for demangled symbol name
lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none
lldb.SBSymbol.type => lldb.eSymbolType enum value
lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one)
lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one)
lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes
lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol
SBFunction now also has these new properties in addition to what is already has:
lldb.SBFunction.addr => SBAddress object that represents the start address for this function
lldb.SBFunction.end_addr => SBAddress for the end address of the function
lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function
SBFrame now exposes the SBAddress for the frame:
lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC
These are all in addition to what was already added. Documentation and website
updates coming soon.
llvm-svn: 149489
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
We should ultimately introduce GetAs...Type
functions in all cases where we have Is...Type
functions that know how to look inside typedefs.
llvm-svn: 148512
be fetched too many times and the DisassemblerLLVM was appending to strings
when the opcode, mnemonic and comment accessors were called multiple times
and if any of the strings were empty.
Also fixed the test suite failures from recent Objective C modifications.
llvm-svn: 148460
for each ObjCInterfaceDecl was imposing performance
penalties for Objective-C apps. Instead, we now use
the normal function query mechanisms, which use the
relevant accelerator tables.
This fix also includes some modifications to the
SymbolFile which allow us to find Objective-C methods
and report their Clang Decls correctly.
llvm-svn: 148457
master AST importer imports types.
- First, before importing the definition of a
Decl from its source, notify the underlying
importer of the source->destination mapping.
Especially for anonymous strucutres that are
otherwise hard to unique in the target AST
context, this hint is very helpful.
- When deporting a type or Decl from one
ASTContext to another (deporting occurs in
the case of moving result types from the
parser's AST context to the result AST
context), don't forget their origin if the
origin is the original debug information.
llvm-svn: 148152
debug info, call it anonymous. This isn't
perfect, because Clang actually considers the
following struct not to be anonymous:
–
struct {
int x;
int y;
} g_foo;
-
but DWARF doesn't make the distinction.
llvm-svn: 148145
are made up from the ObjC runtime symbols. For now the latter contain nothing but the fact that the name
describes an ObjC class, and so are not useful for things like dynamic types.
llvm-svn: 148059
mmap() the entire object file contents into memory with MAP_PRIVATE.
We do this because object file contents can change on us and currently
this helps alleviate this situation. It also make the code for accessing
object file data much easier to manage and we don't end up opening the
file, reading some data and closing the file over and over.
llvm-svn: 148017
so that we don't have "fprintf (stderr, ...)" calls sprinkled everywhere.
Changed all needed locations over to using this.
For non-darwin, we log to stderr only. On darwin, we log to stderr _and_
to ASL (Apple System Log facility). This will allow GUI apps to have a place
for these error and warning messages to go, and also allows the command line
apps to log directly to the terminal.
llvm-svn: 147596
Switch from GetReturnValue, which was hardly ever used, to GetReturnValueObject
which is much more convenient.
Return the "return value object" as a persistent variable if requested.
llvm-svn: 147157
types that have been imported multiple times.
The discussion below uses this diagram:
ASTContext A B C
Decl Da Db Dc
ASTImporter \-Iab-/\-Iac-/
\-----Iac----/
When a Decl D is imported from ASTContext A to
ASTContext B, the ASTImporter Iab records the
pair <Da, Db> in a DenseMap. That way, if Iab
ever encounters Da again (for example, as the
DeclContext for another Decl), it can use the
imported version. This is not an optimization,
it is critical: if I import the field "st_dev"
as part of importing "struct stat," the field
must have DeclContext equal to the parent
structure or we end up with multiple different
Decls containing different parts of "struct
stat." "struct stat" is imported once and
recorded in the DenseMap; then the ASTImporter
finds that same version when looking for the
DeclContext of "st_dev."
The bug arises when Db is imported into another
ASTContext C and ASTContext B goes away. This
often occurs when LLDB produces result variables
for expressions. Ibc is aware of the transport
of Db to Dc, but a brand new ASTImporter, Iac,
is responsible for completing Dc from its source
upon request. That ASTImporter has no mappings,
so it will produce a clone of Dc when attempting
to import its children. That means that type
completion operations on Dc will fail.
The solution is to create Iac as soon as Ibc
imports D from B to C, and inform Iac of the
mapping between Da and Dc. This allows type
completion to happen correctly.
llvm-svn: 147016
we handle Objective-C method calls. Currently,
LLDB treats the result of an Objective-C method
as unknown if the type information doesn't have
the method's signature. Now Clang can cast the
result to id if it isn't explicitly cast.
I also added a test case for this, as well as a
fix for a type import problem that this feature
exposed.
llvm-svn: 146756
in the context in which it was originally found, the
expression parser now goes hunting for it in all modules
(in the appropriate namespace, if applicable). This means
that forward-declared types that exist in another shared
library will now be resolved correctly.
Added a test case to cover this. The test case also tests
"frame variable," which does not have this functionality
yet.
llvm-svn: 146204
take a SymbolFile reference and a lldb::user_id_t and be used in objects
which represent things in debug symbols that have types where we don't need
to know the true type yet, such as in lldb_private::Variable objects. This
allows us to defer resolving the type until something is used. More specifically
this allows us to get 1000 local variables from the current function, and if
the user types "frame variable argc", we end up _only_ resolving the type for
"argc" and not for the 999 other local variables. We can expand the use of this
as needed in the future.
Modified the DWARFMappedHash class to be able to read the HashData that has
more than just the DIE offset. It currently will read the atoms in the header
definition and read the data correctly. Currently only the DIE offset and
type flags are supported. This is needed for adding type flags to the
.apple_types hash accelerator tables.
Fixed a assertion crash that would happen if we have a variable that had a
DW_AT_const_value instead of a location where "location.LocationContains_DW_OP_addr()"
would end up asserting when it tried to parse the variable location as a
DWARF opcode list.
Decreased the amount of memory that LLDB would use when evaluating an expression
by 3x - 4x for clang. There was a place in the namespace lookup code that was
parsing all namespaces with a certain name in a DWARF file instead of stopping
when it found the first match. This was causing all of the compile units with
a matching namespace to get parsed into memory and causing unnecessary memory
bloat.
Improved "Target::EvaluateExpression(...)" to not try and find a variable
when the expression contains characters that would certainly cause an expression
to need to be evaluated by the debugger.
llvm-svn: 146130
from symbols more accessible, I have added a second
map to the ClangASTImporter: the ObjCInterfaceMetaMap.
This map keeps track of all type definitions found for
a particular Objective-C interface, allowing the
ClangASTSource to refer to all possible sources when
looking for method definitions.
There is a bug in lookup that I still need to figure out,
but after that we should be able to report full method
information for Objective-C classes shown in symbols.
Also fixed some errors I ran into when enabling the maps
for the persistent type store. The persistent type store
previously did not use the ClangASTImporter to import
types, instead using ASTImporters that got allocated each
time a type needed copying. To support the requirements
of the persistent type store -- namely, that types must be
copied, completed, and then completely severed from their
origin in the parser's AST context (which will go away) --
I added a new function called DeportType which severs all
these connections.
llvm-svn: 145914
methods. The Clang dump is now much more verbose,
but when somebody types "target modules lookup -t"
that is typically what they're looking for.
llvm-svn: 145892
add them to a fast lookup map. lldb_private::Symtab now export the following
public typedefs:
namespace lldb_private {
class Symtab {
typedef std::vector<uint32_t> IndexCollection;
typedef UniqueCStringMap<uint32_t> NameToIndexMap;
};
}
Clients can then find symbols by name and or type and end up with a
Symtab::IndexCollection that is filled with indexes. These indexes can then
be put into a name to index lookup map and control if the mangled and
demangled names get added to the map:
bool add_demangled = true;
bool add_mangled = true;
Symtab::NameToIndexMap name_to_index;
symtab->AppendSymbolNamesToMap (indexes, add_demangled, add_mangled, name_to_index).
This can be repeated as many times as needed to get a lookup table that
you are happy with, and then this can be sorted:
name_to_index.Sort();
Now name lookups can be done using a subset of the symbols you extracted from
the symbol table. This is currently being used to extract objective C types
from object files when there is no debug info in SymbolFileSymtab.
Cleaned up how the objective C types were being vended to be more efficient
and fixed some errors in the regular expression that was being used.
llvm-svn: 145777
for all our external AST sources that lets us associate
arbitrary flags with the types we put into the AST
contexts. Also added an API on ClangASTContext that
allows access to these flags given only an ASTContext
and a type.
Because we don't have access to RTTI, and because at
some point in the future we might encounter external
AST sources that we didn't make (so they don't subclass
ClangExternalASTSourceCommon) I added a magic number
that we check before doing anything else, so that we
can catch that problem as soon as it appears.
llvm-svn: 145748
object file can correctly make these symbols which will abstract us from the
file format and ABI and we can then ask for the objective C class symbol for
a class and find out which object file it was defined in.
llvm-svn: 145744
Fixed templates with NonTypeTemplateParmDecl objects. For example:
template <unsigned N>
....
This fixes SmallVector and all of the other classes that have template params
that are non types.
llvm-svn: 145667
to find Objective-C class types by looking in the
symbol tables for the individual object files.
I did this as follows:
- I added code to SymbolFileSymtab that vends
Clang types for symbols matching the pattern
"_OBJC_CLASS_$_NSMyClassName," making them
appear as Objective-C classes. This only occurs
in modules that do not have debug information,
since otherwise SymbolFileDWARF would be in
charge of looking up types.
- I made a new SymbolVendor subclass for the
Apple Objective-C runtime that is in charge of
making global lookups of Objective-C types. It
currently just sends out type lookup requests to
the appropriate SymbolFiles, but in the future we
will probably extend it to query the runtime more
completely.
I also modified a testcase whose behavior is changed
by the fact that we now actually return an Objective-C
type for __NSCFString.
llvm-svn: 145526
management of what allocations remain after an
expression finishes executing. This saves around
2.5KiB per expression for simple expressions.
llvm-svn: 145342
to launch a process for debugging. Since this isn't supported on all platforms,
we need to do what we used to do if this isn't supported. I added:
bool
Platform::CanDebugProcess ();
This will get checked before trying to launch a process for debugging and then
fall back to launching the process through the current host debugger. This
should solve the issue for linux and keep the platform code clean.
Centralized logging code for logging errors, warnings and logs when reporting
things for modules or symbol files. Both lldb_private::Module and
lldb_private::SymbolFile now have the following member functions:
void
LogMessage (Log *log, const char *format, ...);
void
ReportWarning (const char *format, ...);
void
ReportError (const char *format, ...);
These will all output the module name and object (if any) such as:
"error: lldb.so ...."
"warning: my_archive.a(foo.o) ...."
This will keep the output consistent and stop a lot of logging calls from
having to try and output all of the information that uniquely identifies
a module or symbol file. Many places in the code were grabbing the path to the
object file manually and if the module represented a .o file in an archive, we
would see log messages like:
error: foo.a - some error happened
llvm-svn: 145219
to allow variables in the persistent variable store to know
how to complete themselves from debug information. That
fixes a variety of bugs during dematerialization of
expression results and also makes persistent variable and
result variables ($foo, $4, ...) more useful.
I have also added logging improvements that make it much
easier to figure out how types are moving from place to
place, and made some checking a little more aggressive.
The commit includes patches to Clang which are currently being
integrated into Clang proper; once these fixes are in Clang
top-of-tree, these patches will be removed. The patches don't
fix API; rather, they fix some internal bugs in Clang's
ASTImporter that were exposed when LLDB was moving types from
place to place multiple times.
llvm-svn: 144969
completion information between different AST
contexts. It works like this:
- If a Decl is imported from a context that
has completion metadata, then that Decl
is associated with the same completion
information (possibly none) as the Decl
it was imported from.
- If a Decl is imported from a context that
does not have completion metadata, then it
is marked as completable by consulting the
Decl and context it was imported from.
llvm-svn: 144838
for each AST context it knows about in a single
object. This makes it faster to look up the
appropriate ASTImpoter for a given ASTContext
pair and also makes it much easier to delete all
metadata for a given AST context.
In the future, this fix will allow the
ClangASTImporter to propagate completion
information between the metadata for different
AST contexts as its minions move AST objects
around.
llvm-svn: 144835
rather than individually on behalf of each
ASTContext. This allows the ASTImporter to know
about all containers of types, which will let it
be smarter about forwarding information about
type origins. That means that the following
sequence of steps will be possible (after a few
more changes):
- Import a type from a Module's ASTContext into
an expression parser ASTContext, tracking its
origin information -- this works now.
- Because the result of the expression uses that
type, import it from the expression parser
ASTContext into the Target's scratch AST
context, forwarding the origin information --
this needs to be added.
- For a later expression that uses the result,
import the type from the Target's scratch AST
context, still forwarding origin information
-- this also needs to be added.
- Use the intact origin information to complete
the type as needed -- this works now if the
origin information is present.
To this end, I made the following changes:
- ASTImporter top-level copy functions now
require both a source and a destination AST
context parameter.
- The ASTImporter now knows how to purge
records related to an ASTContext that is
going away.
- The Target now owns and creates the ASTImporter
whenever the main executable changes or (in the
absence of a main executable) on demand.
llvm-svn: 144802
of problems with Objective-C object completion. To go
along with the LLVM/Clang-side fixes, we have a variety
of Objective-C improvements.
Fixes include:
- It is now possible to run expressions when stopped in
an Objective-C class method and have "self" act just
like "self" would act in the class method itself (i.e.,
[self classMethod] works without casting the return
type if debug info is present). To accomplish this,
the expression masquerades as a class method added by
a category.
- Objective-C objects can now provide methods and
properties and methods to Clang on demand (i.e., the
ASTImporter sets hasExternalVisibleDecls on Objective-C
interface objects).
- Objective-C built-in types, which had long been a bone
of contention (should we be using "id"? "id*"?), are
now fetched correctly using accessor functions on
ClangASTContext. We inhibit searches for them in the
debug information.
There are also a variety of logging fixes, and I made two
changes to the test suite:
- Enabled a test case for Objective-C properties in the
current translation unit.
- Added a test case for calling Objective-C class methods
when stopped in a class method.
llvm-svn: 144607
Fixed an issues with the SBType and SBTypeMember classes:
- Fixed SBType to be able to dump itself from python
- Fixed SBType::GetNumberOfFields() to return the correct value for objective C interfaces
- Fixed SBTypeMember to be able to dump itself from python
- Fixed the SBTypeMember ability to get a field offset in bytes (the value
being returned was wrong)
- Added the SBTypeMember ability to get a field offset in bits
Cleaned up a lot of the Stream usage in the SB API files.
llvm-svn: 144493
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
interfaces. This allows us to pull in Objective-C
method types on demand, which is also now implemented.
Also added a minor fix to prevent multiple-definition
errors for "Class" and "id".
llvm-svn: 144405
lookups for Objective-C methods by selector.
Right now all it does is print log information.
Also improved the logging for imported TagDecls
to indicate whether or not the definition for
the imported TagDecl is complete.
llvm-svn: 144203
C++ vtables, fixing a record layout problem in the
expression parser.
Also fixed various problems with the generation
and unpacking of llvm.zip given our new better
handling of multiple architectures in the LLVM
build.
(And added a log message that will hopefully catch
record layout problems in the future.)
llvm-svn: 143741
- If you download and build the sources in the Xcode project, x86_64 builds
by default using the "llvm.zip" checkpointed LLVM.
- If you delete the "lldb/llvm.zip" and the "lldb/llvm" folder, and build the
Xcode project will download the right LLVM sources and build them from
scratch
- If you have a "lldb/llvm" folder already that contains a "lldb/llvm/lib"
directory, we will use the sources you have placed in the LLDB directory.
Python can now be disabled for platforms that don't support it.
Changed the way the libllvmclang.a files get used. They now all get built into
arch specific directories and never get merged into universal binaries as this
was causing issues where you would have to go and delete the file if you wanted
to build an extra architecture slice.
llvm-svn: 143678
allows us to set __attribute__ ((used)) on expressions
that masquerade as methods. When we are stopped in
classes in anonymous namespaces, this fix (and enabling
__attribute__ ((used)) on the method) will allow
expressions to run.
llvm-svn: 143560
Fixed an issue where the DWARF might mention that a class has a constructor
(default, copy or move), destructor, or an assignment operator (copy or move)
and it might not have an actual implementation in your code. Then you try and
use this struct or class in an expression and the JIT would ask for the
address of these methods that were in the declaration, yet there are none.
We now "do the right thing" for trivial ctors, dtors and assignment operators
by telling the methods that they are are defaulted and trivial, and clang will
then just do all of the work with builtins!
llvm-svn: 143528
generated special member functions (constructors,
destructors, etc.) for classes that don't really have
them. We needed to mark these as artificial to reflect
the debug information; this bug does that for
constructors and destructors.
The "etc." case (certain assignment operators, mostly)
remains to be fixed.
llvm-svn: 143526
method as __attribute__ ((used)) when adding it to a
class. This functionality is useful when stopped in
anonymous namespaces: expressions attached to classes
in anonymous namespaces are typically elided by Clang's
CodeGen because they have no namespaces are intended
not to be externally visible. __attribute__ ((used))
forces CodeGen to emit the function.
Right now, __attribute__ ((used)) causes the JIT not to
emit the function, so we're not enabling it until we
fix that.
llvm-svn: 143469
of reference types. Previously, such variables were
materialized as references to those references, which
caused undesried behavior in Clang and was useless anyway
(the benefit of using references to variables is that it
allows expressions to modify variables in place, but for
references that's not required).
Now we just materialize the references directly, which
fixes a variety of expressions that use references.
llvm-svn: 143137
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
be set if linking against an LLVM compiled with
NDEBUG off. If it is set, we do not enable NDEBUG
in any place where we include LLVM headers.
llvm-svn: 143036
linked against a debug LLVM, runs a variety of
functions -- currently just one -- that verify
that the Decls we create are valid.
ClangASTContext now calls this verifier whenever
it adds a Decl to a DeclContext, and the verifier
checks that the AccessSpecifier is sane.
llvm-svn: 143000
permits a namespace map to be created and populated
when the namespace is imported, not just when it is
requested via FindExternalVisibleDecls().
llvm-svn: 142690
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
so we don't have to lookup types in a type list by ID.
Changed the DWARF parser to remove the "can externally complete myself" bits
from the type when we are in the process of completing the type itself to
avoid an onslaught of external visible decl requests from the
clang::ExternalASTSource.
llvm-svn: 142461
FindExternalVisibleDecls and FindExternalLexicalDecls
are marked and given unique IDs, so that all logging
done as part of their execution can be traced back to
the proper call.
Also there was some logging that really wasn't helpful
in most cases so I disabled it unless verbose logging
(log enable -v lldb expr) is enabled.
llvm-svn: 141987
Specifically, the expression parser used to use
functions attached to SymbolContext to do lookups,
but nowadays it searches a ModuleList or Module
directly instead. These functions had no
remaining clients so I removed them to prevent
bit rot.
I also removed a stray callback function from
ClangExpressionDeclMap.
llvm-svn: 141899
down through Module and SymbolVendor into SymbolFile.
Added checks to SymbolFileDWARF that restrict symbol
searches when a namespace is passed in.
llvm-svn: 141847
of namespaces (only in the modules where they've
been found) for entities inside those namespaces.
For each NamespaceDecl that has been imported into
the parser, we maintain a map containing
[ModuleSP, ClangNamespaceDecl] pairs in the ASTImporter.
This map has one entry for each module in which the
namespace has been found. When we later scan for an
entity inside a namespace, we search only the modules
in which that namespace was found.
Also made a small whitespace fix in
ClangExpressionParser.cpp.
llvm-svn: 141748
This involved minor changes to the way we report Objective-C
methods, as well as cosmetic changes and added parameters
for a variety of Clang APIs.
llvm-svn: 141437